期刊文献+

基于加权相对熵的二阶马尔可夫模型的进化树重构 被引量:1

Weighted Relative Entropy for Phylogenetic Tree Based on 2-step Markov Model
下载PDF
导出
摘要 利用加权相对熵的二阶马尔可夫模型的基本原理,对DNA序列进行比较.DNA序列由4个字符A、T、C、G构成的序列,将其视为一个马尔可夫链,取状态空间Ι={A,T,C,G},使用二阶转移概率矩阵来描述DNA序列,得到DNA序列的特征值,进而利用特征值定义DNA序列的相似性度量,得到能够对DNA序列进行比较的新方法,并利用这个方法对30个物种的线粒体DNA序列进行分类,通过加权相对熵得到距离矩阵的非比对方法构建的进化树划分更加清晰,准确度更高. The fundamental of the weighted relative entropy is introduce based on 2-step Markov model to compare DNA sequences. The DNA sequence, consisted of four characters A, T, C and G can be considered as a Markov chain. By taking state space ! = {A, T, C, G f and describe the DNA sequences with 2-step transition probability matrix, the eigen value of the DNA sequence can be obtained to define the similarity metric. Therefore, a new method to compare the DNA sequences is found to classify chromosomes DNA sequences ob- tained from 30 species. The phylogenetic tree built by the alignment-free method of the distance matrix resul- ted from the weighted relative entropy has clearer and more accurate division.
出处 《大连交通大学学报》 CAS 2013年第5期112-117,共6页 Journal of Dalian Jiaotong University
关键词 二阶马尔可夫模型 DNA序列分类 加权相对熵 进化树 2-step Markov model comparison of DNA sequences weighted relative entropy phylogenetic tree
  • 相关文献

参考文献14

  • 1RANDIC M. Graphical representations of DNA as 2-D map [ J ]. Chem. Phys. Lett, 2003,386:468-473.
  • 2HAMORI E, RUSKIN J. H curves, a novel method of representation of nucleotide series especially suited for long DNA sequences [J]. J Biol Chem, 1983, 258(2) : 1318-1327.
  • 3刘次华.随机过程及其应用[M].北京:高等教育出版社,2009:48-50.
  • 4KULLBACK S, LEIBLER R. On information and suffi- ciency [ J ]. IEEE Transactions on Information Theory, 1991,37 : 145-151.
  • 5KULL B, LEIBLER R A. On Information and Sufficiency[J]. Annals of Mathematical Statistics, 1951,22 : 79- 86.
  • 6SIMONS G, YAO Y, MORTON G. Global Markov mod- els for eukaryote nucleotide data [ J ]. J Stat Plan Infer, 2005, 130(1-2): 251-275.
  • 7Thompson J D, Higgins D, Gibson T. CLUSTAL W : im- poring the sensitivity of progressive multiple sequence a- lignment through sequence weighting, positions-specific gap penalties and weight matrix choices [ J ]. Nucleic Acids Research, 1994, 22:46734680.
  • 8VOSS R. Evolution of long-range fractal correlation and 1/f noise in DNA base sequence [ J ]. Phys Rev Lett, 1992, 68 (25) :3805-3806.
  • 9LI M, VIT A NYI P. An Introduction to Kolmogorov complexity and its Applications [ M ]. Springer Verlag, NY, 1997.
  • 10LI M, BADGER J, CHEN X, et al. An information-based sequence distance and its application to whole mitochon- drial genome phylogeny [ J ]. Bioinformatics, 2001, 17 (2) :149-154.

同被引文献13

引证文献1

二级引证文献3

相关作者

内容加载中请稍等...

相关机构

内容加载中请稍等...

相关主题

内容加载中请稍等...

浏览历史

内容加载中请稍等...
;
使用帮助 返回顶部