期刊文献+

自适应光学中SPGD算法关键参数实时调节方法 被引量:2

Adjusting key parameters in SPGD algorithm for adaptive optics systems
下载PDF
导出
摘要 介绍了随机并行梯度下降(SPGD)算法及其在相干合成中的应用,针对实验中算法关键参数难以调节的难点,提出采用软硬件结合的新方式,实现对实验数据的在线采集和分析以及对SPGD算法关键参数的自动实时调节。开展了4路光纤激光相干合成实验,对不同调节方法进行对比。实验中采用新方式有效调节了SPGD算法中增益系数和随机扰动幅度的取值,合成效果显著。 The theory about stochastic parallel gradient descent(SPGD) algorithm and the use of SPGD algorithm for coher- ent beam combination are introduced. For solving the difficulty for adjusting the key parameters in SPGD algorithm, a new meth- od of combining the hardware and software is proposed, which can online collect and analyze the experimental data and automati- cally adjust the key parameters in SPGD in real time. Experiments of 4 fiber-laser coherent beam combination are developed, in which different adjusting methods are compared. The results show that using new methods can efficiently achieve the value of the gain coefficient and the stochastic perturbation amplitude in SPGD algorithm. The experiments are profitable. The new method proposed in the paper is novel and effective, which can also guide the coherent beam combining experiments in the future.
出处 《强激光与粒子束》 EI CAS CSCD 北大核心 2013年第10期2527-2530,共4页 High Power Laser and Particle Beams
关键词 随机并行梯度下降算法 相干合成 增益系数 随机扰动幅度 实时调节 光纤激光 stochastic parallel gradient descent coherent beam combination gain coefficient stochastic perturbation amplitude real time adaption fiber laser
  • 相关文献

参考文献8

二级参考文献46

共引文献97

同被引文献29

  • 1Figueiredo M A T, Bioucas-Dias J M, Nowak R D. Majorization -minimization algorithms for wavelet-based image restoration[J]. IEEE Trans on hnage Processing, 2007, 16(12) :2980-2991.
  • 2Combettes P L, Wajs V R. Signal recovery by proximal forward-backward splitting[-J]. Multiscale Modeling & Simulation, 2005, 4(4) 1168-1200.
  • 3Bioucas-Dias J M. Bayesian wavelet-based image deconvolution: A GEM algorithm exploiting a class of heavy-tailed priors[J]. IEEE Trans on Image Processing, 2006, 15(4):937-951.
  • 4Daubechies I, Defrise M, De Mol C. An iterative thresholding algorithm for linear inverse problems with a sparsity constraint[J]. Commu- nications on Pure and Applied Mathematics, 2004, 57 (11) : 1413-1457.
  • 5Bioueas-Dias J M, Figueiredo M A T. A new TWIST: Two-step iterative shrinkage/thresholding algorithms for image restoration[J]. IEEE Trans on Image Processing, 2007, 16(12) :2992-3004.
  • 6Beck A, Teboulle M. A fast iterative shrinkage-thresholding algorithm for linear inverse problems[J]. SIAM Journal on Imaging Sciences, 2009; 2(1) :183-202.
  • 7Bioueas-Dias J M, Figueiredo M A T. An iterative algorithm for linear inverse problems with compound regularizers[C]//15th IEEE Inter- national Conference on Image Processing. 2008:685-688.
  • 8Kingsbury N G. The dual-tree complex wavelet transform: A new technique for shift invariance and directional filters[C]//Proc of 8th IEEE DSP workshop. 1998..86.
  • 9Nocedal J, Wright S J. Numerical optimization[M]. New York: Springer, 1999.
  • 10Pan Hangie, Blu T. An iterative linear expansion of thresholds for ll-based image restoration[J]. IEEE Trans on Image Processing, 2013, 22(9)..3715-3728.

引证文献2

二级引证文献6

相关作者

内容加载中请稍等...

相关机构

内容加载中请稍等...

相关主题

内容加载中请稍等...

浏览历史

内容加载中请稍等...
;
使用帮助 返回顶部