期刊文献+

一类分形插值迭代函数系及其性质 被引量:2

A Class of Iterated Function Systems of Fractal Interpolation and Their Properties
下载PDF
导出
摘要 基于分形插值方法,构造了一类具有较大灵活性的分形插值迭代函数系。证明了这类迭代函数系的吸引子是经过给定插值点的分形插值曲线,并给出两个具体的例子,展示了此类分形插值曲线的形状。研究了这类分形插值函数关于自由参数的连续依赖性。最后,讨论了此类迭代函数系发生扰动时相应的分形插值函数的变化规律。在一定条件下,给出了由扰动迭代函数系和原始迭代函数系所产生分形插值函数之间的误差估计式。 Based on the method of construction of fractal interpolation ,a class of fractal interpolation iterated func-tion systems with more flexibility is constructed .It’ s proved that the attractor of this iterated function system is the fractal interpolation curve which passing through the given interpolation points ,and two specific examples are given ,which shows the shapes of such fractal interpolation curves .It is studied that the continuous dependence of this fractal interpolation function with respect to free parameters .Finally ,the character of changes for the corre-sponding FIF is investigated when this kind of iterated function systems has a small perturbation .Under certain conditions,the error estimation between the FIF generated by the perturbed IFS and the FIF generated by the o-riginal IFS is established .
出处 《安徽理工大学学报(自然科学版)》 CAS 2013年第3期78-82,共5页 Journal of Anhui University of Science and Technology:Natural Science
基金 南京财经大学预研究资助项目(A2011019) 研究生教育课题资助项目(M12059)
关键词 迭代函数系 分形插值函数 吸引子 连续依赖性 扰动误差 iterated function system fractal interpolation function attractor continuous dependence perturbation error
  • 相关文献

参考文献8

  • 1BARNSLEY M F. Fractal functions and interpolation [ J ]. Constr. Appronx. , 1986 (2) :303 - 329.
  • 2FENG Z, XIE H. On stability of fractal interpolation [ J ]. Fractals, 1998,6 (3) : 269 - 273.
  • 3DALLA L. Bivariate fractal interpolation functions on grids [J]. Fractals,2002,10( 1 ) :53 -58.
  • 4BOUBOULIS P, DALLA L. Fractal interpolation sur- faces derived from fractal interpolation functions [ J ]. J. Math. Anal. Appl. ,2007,336:919-936.
  • 5RUAN H- J, SU W- Y, YAO K. Box dimension and fractal integral of linear fractal interpolation function [J]. J. Approx. Theory,2009,161:187-197.
  • 6WANG H- Y, LI X - J. Perturbation error analysis for fractal interpolation functions and their moments [ J ]. Appl. Math. Lett. , 2008,21 ( 5 ) :441 - 446.
  • 7王宏勇,樊昭磊.具有函数纵向尺度因子的分形插值函数的分析特性[J].数学学报(中文版),2011,54(1):147-158. 被引量:8
  • 8METZLER W, YUN C H. Construction of fractal interpolation surfaces on rectangular grids [ J ]. Int. J. Bi- furcat. Chaos,2010,20(12) :4 079 -4 086.

二级参考文献1

共引文献7

同被引文献4

引证文献2

二级引证文献4

相关作者

内容加载中请稍等...

相关机构

内容加载中请稍等...

相关主题

内容加载中请稍等...

浏览历史

内容加载中请稍等...
;
使用帮助 返回顶部