期刊文献+

多层次MRF重标记及映射法则下的图像分割 被引量:11

Top-down Inference with Relabeling and Mapping Rules in Hierarchical MRF for Image Segmentation
下载PDF
导出
摘要 针对彩色图像分割问题,研究Markov随机场(Markov random fields,MRF)模型内迭代条件模式(Iterative conditional mode,ICM)方法的标记推理策略.通过小波分解构造图像多尺度表达,针对顶层图像先验标记获取问题,改进原始谱聚类算法,通过近邻传播自动确定图像的聚类参数,运用集成学习提高算法的稳定性和准确度.对其他各尺度图像,通过分析尺度关联下的区域特征变化,结合不同尺度间的特征相似性和同一尺度内空间邻域的一致性,提出一种立体结构描述下的尺度–空间映射法则.通过定量和定性的分割实验,结果表明本文算法具有良好的准确性、鲁棒性和普适性. For the purpose of color images segmentation, the problem of inferring strategy for iterative conditional mode (ICM) algorithm in the Markov random fields (MRFs) is revisited. Using wavelet decomposition to construct multi- solution expressing of image, the original spectral clustering algorithm is improved to solve the problem of acquiring the prior labels for top-scale image. The parameters of image clustering are generated by affine propagation automatically and the prior labels are acquired after optimizing with ensemble learning to improve the accuracy and stability of algorithm. By analyzing the difference of features in related scales, a scale-space mapping algorithm is proposed to combine the similarity between the connected scales with the consistency in the same scale. With the quantization and evaluation of the segmentation results, the algorithm shows its property of stability, accuracy, generality and robustness to the noise disturbance.
作者 姚婷婷 谢昭
出处 《自动化学报》 EI CSCD 北大核心 2013年第10期1581-1593,共13页 Acta Automatica Sinica
基金 国家自然科学基金(60905005 61273237) 教育部博士点基金(20090111110015) 中央高校基本科研业务费专项资金(2012HGCX0001)资助~~
关键词 层次Markov随机场 集成标记 层间映射推理 图像分割 Hierarchical Markov random field (MRF), ensemble labeling, label-mapping inference, image segmentation
  • 相关文献

参考文献23

  • 1Gong M L,Li C.Foreground segmentation of live videos using locally competing 1SVMs.In:Proceedings of the 2011 Computer Vision and Pattern Recognition.Colorado,USA:IEEE,2011.2105-2112.
  • 2王坤峰,李镇江,汤淑明.基于多特征融合的视频交通数据采集方法[J].自动化学报,2011,37(3):322-330. 被引量:15
  • 3卜江,老松杨,白亮,刘钢.一种基于球场模型的广播足球视频摄像机自动定标方法[J].自动化学报,2012,38(3):321-330. 被引量:1
  • 4Comaniciu D,Meer P.Mean shift:a robust approach toward feature space analysis.IEEE Transactions on Pattern Analysis and Machine Intelligence,2002,24(5):603-619.
  • 5Felzenszwalb P F,Huttenlocher D P.Efficient graph-based image segmentation.International Journal of Computer Vision,2004,59(2):167-181.
  • 6Shi J B,Malik J.Normalized cuts and image segmentation.IEEE Transactions on Pattern Analysis and Machine Intelligence,2000,22(8):888-905.
  • 7Stuart G,Donald G.Stochastic relaxation,Gibbs distributions,and the Bayesian restoration of images.IEEE Transactions on Pattern Analysis and Machine Intelligence,1984,6(6):721-741.
  • 8刘松涛,殷福亮.基于图割的图像分割方法及其新进展[J].自动化学报,2012,38(6):911-922. 被引量:142
  • 9Li Q S,Liu G Y.Multi-resolution Markov random field model with variable potentials in wavelet domain for texture image segmentation.In:Proceedings of the 2010 International Conference on Computer Application and System Modeling.Taiyuan,China:IEEE,2010,9:342-346.
  • 10Wang L,Liu J.Texture segmentation based on MRMRF modeling.Pattern Recognition Letters,2000,21(2):189-200.

二级参考文献133

  • 1唐鹏,高琳,盛鹏.基于动态形状的红外目标提取算法[J].光电子.激光,2009,20(8):1049-1052. 被引量:3
  • 2闫成新,桑农,张天序.基于图论的图像分割研究进展[J].计算机工程与应用,2006,42(5):11-14. 被引量:33
  • 3陶文兵,金海.一种新的基于图谱理论的图像阈值分割方法[J].计算机学报,2007,30(1):110-119. 被引量:58
  • 4Morris B T, Trivedi M M. Contextual activity visualization from long-term video observations. IEEE Intelligent Systems, 2010, 25(3): 50-62.
  • 5Kanhere N K, Birchfield S T. Real-time incremental segmentation and tracking of vehicles at low camera angles using stable features. IEEE Transactions on Intelligent Transportation Systems, 2008, 9(1): 148-160.
  • 6O'Malley R, Jones E, Glavin M. Rear-lamp vehicle detection and tracking in low-exposure color video for night conditions. IEEE Transactions on Intelligent Transportation Systems, 2010, 11(2): 453-462.
  • 7Maggio E, Cavallaro A. Learning scene context for multiple object tracking. IEEE Transactions on Image Processing, 2009, 18(8): 1873-1884.
  • 8Mandellos N A, Keramitsoglou I, Kiranoudis C T. A background subtraction algorithm for detecting and tracking vehicles. Expert Systems with Applications, 2011, 38(3): 1619-1631.
  • 9Cho S Y, Quek C, Seah S X, Chong C H. HebbR2-Taffic: a novel application of neuro-fuzzy network for visual based traffic monitoring system. Expert Systems with Applications, 2009, 36(3): 6343-6356.
  • 10Hsu W L, Liao H Y M, Jeng B S, Fan K C. Real-time traffic parameter extraction using entropy. IEE Proceedings - Vision, Image and Signal Processing, 2004, 151(3): 194-202.

共引文献155

同被引文献146

  • 1李志农,郝伟,韩捷,何永勇,褚福磊.噪声环境下机械故障源的盲分离[J].农业机械学报,2006,37(11):110-113. 被引量:22
  • 2蔡纯,孙洪,曹永锋.基于区域似然比的SAR图像变化检测[J].武汉大学学报(理学版),2005,51(1):109-113. 被引量:8
  • 3覃先林,李增元,易浩若.高空间分辨率卫星遥感影像树冠信息提取方法研究[J].遥感技术与应用,2005,20(2):228-232. 被引量:53
  • 4陈富龙,张红,王超.SAR变化检测技术发展综述[J].遥感技术与应用,2007,22(1):109-115. 被引量:21
  • 5李旭超,朱善安.图像分割中的马尔可夫随机场方法综述[J].中国图象图形学报,2007,12(5):789-798. 被引量:64
  • 6Field D J. Relations between the statistics of natural images and the response properties of cortical cells. Journal of the Optical Society of America, 1987, 4(12): 2379-2394.
  • 7Doretto G, Chiuso A, Wu Y N, Soatto S. Dynamic textures. International Journal of Computer Vision, 2003, 51(2): 91-109.
  • 8Chan A B, Vasconcelos N. Mixtures of dynamic textures. In: Proceedings of the 10th IEEE International Conference on Computer Vision. Beijing, China: IEEE, 2005. 641-647.
  • 9Chan A B, Vasconcelos N. Classifying video with kernel dynamic textures. In: Proceedings of the 2007 IEEE Conference on Computer Vision and Pattern Recognition. Minneapolis, USA: IEEE, 2007. 1-6.
  • 10Chan A B, Vasconcelos N. Probabilistic kernels for the classification of auto-regressive visual processes. In: Proceedings of the 2005 IEEE Computer Society Conference on Computer Vision and Pattern Recognition. San Diego, USA: IEEE, 2005. 846-851.

引证文献11

二级引证文献38

相关作者

内容加载中请稍等...

相关机构

内容加载中请稍等...

相关主题

内容加载中请稍等...

浏览历史

内容加载中请稍等...
;
使用帮助 返回顶部