期刊文献+

动态场景下基于精确背景补偿的运动目标检测 被引量:10

MOVING OBJECTS DETECTION BASED ON EXACT BACKGROUND COMPENSATION IN DYNAMIC SCENE
下载PDF
导出
摘要 针对动态场景下因背景补偿效果欠佳而不能准确检测运动目标的问题,提出一种基于精确背景补偿的运动目标检测算法。算法采用加入对称约束的SURF特征点匹配算法,以获得稳健的匹配点对。同时利用自适应外点滤除法去除目标点对全局运动估计的影响,显著地提高了背景补偿的精度。最后用帧差法准确地检测出运动目标。实验结果表明,该算法具有很好的鲁棒性,能够在背景复杂且摄像机运动的环境下准确地提取出运动目标。 As the imprecise background compensation result will lead to inaccurate detection of moving objects in dynamic scene, we put forward an algorithm of detecting moving objects which is based on accurate background compensation. This algorithm applies speeded up robust feature (SURF) points matching method with symmetry restriction added for obtaining robust matching points. Meanwhile it employs an adaptive outliers filtering method to remove the influence of objective points on global motion estimation. As a result, the accuracy of the background compensation is improved obviously. At last the moving objects are detected by frame difference method. Experimental results show that with favourable robustness, the algorithm is able to extract the moving objects accurately even in complex background while the camera is moving.
出处 《计算机应用与软件》 CSCD 北大核心 2013年第10期139-141,198,共4页 Computer Applications and Software
基金 河北省科技支撑计划项目(11213518D)
关键词 动态场景 SURF 背景补偿 运动目标检测 Dynamic scene Speeded up robust feature (SURF) Background compensation Moving objects detection
  • 相关文献

参考文献11

二级参考文献52

  • 1曹银花,李林,郜广军,安连生.动摄像机和动目标跟踪模式下的目标检测新方法[J].光学技术,2005,31(2):276-278. 被引量:7
  • 2赖作镁,王敬儒,张启衡.基于鲁棒背景运动补偿的运动目标检测算法[J].计算机应用研究,2007,24(3):66-68. 被引量:10
  • 3Collins R, Lipton A, Kanade T, et al. A system for video surveillance and monitoring: VSAM final report, CMU-RI-TR-00-12[R]. Pittsburgh PA: Carnegie Mellon University, 2000.
  • 4Haritaoglu I, Harwood D, Davis L. W4: real-time surveillance of people and their activitiesEJ3. IEEE Trans Pattern Analysis and Machine Intelligence, 2000,22(8) : 809 - 830.
  • 5McKenna S, Jabri S, Duric Z, et al. Tracking groups of people[J]. Computer Vision and Image Understanding, 2000,80(1) :42 - 56.
  • 6Wren C, Azarbayejani A, Darrell T, et al. Pfinder: real-time tracking of the human body[J]. IEEE Trans on Pattern Analysis and Machine Intelligence, 1997,19(7) : 780 - 785.
  • 7Lipton A, Fujiyoshi H, Patil R. Moving target classification and tracking from real-time video[C]// IEEE Workshop on Applications of Computer Vision. Princeton, USA: [s.n.], 1998:8-14.
  • 8Anderson C, Bert P, Vander W. Change detection and tracking using pyramids transformation techniques[C]// Proc of SPIE Conference on Intelligent Robots and Corn puter Vision. Cambridge, MA, USA: [s. n.], 1985, 579:72 - 78.
  • 9Yu T I., Zhang Y J. Motion feature extraction for content-based video sequence retrieval[C]//Proc of SPIE. Washington, USA:[s. n. ], 2001:378 - 388.
  • 10Horn B K P, Schunck B G. Determining optical flow [J]. Artificial Intelligence, 1981,17 : 185 - 203.

共引文献49

同被引文献87

引证文献10

二级引证文献57

相关作者

内容加载中请稍等...

相关机构

内容加载中请稍等...

相关主题

内容加载中请稍等...

浏览历史

内容加载中请稍等...
;
使用帮助 返回顶部