期刊文献+

改进的ASM人脸特征定位方法及其应用

Improved ASM Facial Features Localization Method and Its Application
下载PDF
导出
摘要 人脸检测在许多应用中有着很重要的作用,精确定位人脸特征点是人脸识别的重要步骤之一。本文改进标准的ASM算法,将ASM算法的单一局部模板扩展为多模板进行匹配,根据人眼和嘴巴的不同表情状态建立局部模板,在匹配过程中选择对应的模板相应地进行匹配搜索,并结合标准ASM算法的全局模板进行特征点定位。实验结果表明,改进的多模板ASM算法较标准ASM算法有很大的提高,效果显著,并能很好地应用在人脸识别算法中。 Face Detection plays a very important role in many applications, and precise localization of facial feature points is one of the important steps in face recognition. A improved method is proposed by expanding from single partial template to multi-tem- plate, and setting the local template according to human eyes and mouth. In the matching process, the corresponding template is selected to search for the matching template combined with the global template to locate the feature points. Experimental results show that the improved multi-template ASM algorithm has been greatly improved than the standard ASM algorithm, and the effect is significant and can be well applied in face recognition algorithm.
作者 徐菲 李玉鑑
出处 《计算机与现代化》 2013年第10期38-41,共4页 Computer and Modernization
基金 国家自然科学基金资助项目(61175004) 北京市自然科学基金资助项目(4112009) 北京市教委科技发展重点项目(KZ01210005007) 高等学校博士学科点专项科研基金资助项目(20121103110029)
关键词 主动形状模型 多模板 人脸检测 人脸识别 ASM (active shape model) multi-template face detection face recognition
  • 相关文献

参考文献17

  • 1边肇祺 张学工.模式识别[M].北京:清华大学出版社,1999.282-283.
  • 2RafaelCGonzalez,RichardEWoods.数字图像处理(第2版)[M].北京:电子工业出版社,2003:471-474.
  • 3冯素玲.人脸识别常用方法研究[J].微计算机信息,2004,20(5):94-95. 被引量:25
  • 4Wu J X, Zhou Z H. Eficient face candidates selector for face detection [ J ]. Pattern Recognition, 2003,36 ( 5 ) : 1175-1186.
  • 5章玲,蒋建国,齐美彬.一种微分与积分投影相结合的眼睛定位方法[J].合肥工业大学学报(自然科学版),2006,29(2):182-185. 被引量:13
  • 6Guan Y P. Robust eye detection from facial image based on muhicue facial information[ C]//Proc. of IEEE International Conference on Control and Automation. 2007: 1775-1778.
  • 7Stegmann M B, Ersbl B K, Larsen R. FAME-a flexible appearance modeling environment [ J ]. IEEE Trans. on Medical Imaging, 2003,22 (10) : 1319-1331.
  • 8Richard O Duda, Peter E Hart, David G Stork. Pattern Clas- sification (2nd Ed) [ M ]. John Wiley & Sons, 2001.
  • 9Zhang L, M Patrick L. Knowledge-based eye detection for human face recognition [ C ]// IEEE Fourth International Conference on Knowledge-based Intelligent Engineering System & Allied Technologies. 2000,1:117-120.
  • 10Phillips P J, Wechsler H, Huang J, et al. The FEREF data- base and evaluation procedure for face recognition algorithms [J]. Image and Vision Computing, 1998,16(5) :295-306.

二级参考文献25

  • 1[1]J Miao, W Gao, Y Q Chen et al. Gravity-center template based human face feature detection. In: Proc of ICMI'2000. Beijing, 2000. 207~214
  • 2[2]M Kass, A Witkin, D Terzopoulos. Snakes: Active contour models. Internation Journal of Computer Vision, 1988, 1(4): 321~331
  • 3[3]Williams, Donna, Shah et al. A fast algorithm for active contours and curvature estimation. CVGIP: Image Understanding, 1992, 55(1): 14~26
  • 4[4]Stever Gunn, Marks Nixon. Global and local active contour for head boundary extraction. International Journal of Computer Vision, 1998, 30(1): 43~54
  • 5[5]B Li, N Roeder. Face contour extraction from front-view images. Pattern recognition, 1995, 28(8): 1167~1179
  • 6[6]H A Rowley, S Baluja, T Kanade. Neural network-based face detection. IEEE-PAMI, 1998, 20(1): 23~38
  • 7[7]Paul Debevec. A neural network for facial feature location. UC Berkeley, Tech Rep: CS283, 1992. http://www.debevec.org/face〖KG-*8 recognition.html
  • 8[8]A L Yuille, Peter W Hallinan, David S Cohen. Feature extraction from faces using deformable templates. International Journal of Computer Vision, 1992, 8(2): 99~111
  • 9[9]J Y Deng, F Lai. Region-based template deformation and masking for eye-feature extraction and description. Pattern recognition, 1997, 30(3): 403~419
  • 10[10]S H Jeng, H Y M Liao et al. Facial feature detection using geometrical face model: An efficient approach. Pattern recognition, 1998, 31(3): 273~282

共引文献196

相关作者

内容加载中请稍等...

相关机构

内容加载中请稍等...

相关主题

内容加载中请稍等...

浏览历史

内容加载中请稍等...
;
使用帮助 返回顶部