期刊文献+

基于多表观模型的鲁棒跟踪算法 被引量:1

Robust Tracking Algorithm Based on Multiple Appearance Models
下载PDF
导出
摘要 针对传统的均值漂移算法中目标表观模型单一且缺乏必要的更新策略的问题,提出了一种基于多表观模型的多尺度均值漂移跟踪算法.该算法通过对模板集进行稀疏主成分分析获得多个表观模型,并分别在每个模型下以多个尺度并行运行均值漂移算法得到多个收敛点.利用前面求得的多个收敛点求取加权中心,并以此为依据寻找当前时刻的目标状态.实验结果表明,与其他跟踪算法相比,本文提出的算法在应对目标姿态变化、背景干扰及遮挡等复杂情况时具有更好的稳定性和鲁棒性. Based on multiple appearance models, a novel multi-scale mean shift tracking algorithm was proposed to deal with the problems caused from the relative simplicity of the single appearance model and the absence of the update strategy under the original framework of mean shift tracking. Based on the multiple appearance models which can be obtained by using sparse principal component analysis, numerous converging points were located by running the basic mean shift trackers in parallel. The weighted center was calculated by setting the converging points as the candidate particles, and the best particle was chosen to determine the current state of the object. Experimental results showed that the proposed method was more robust and stable against pose variation, background clutter and occlusion in comparing with other competing tracking models.
出处 《东北大学学报(自然科学版)》 EI CAS CSCD 北大核心 2013年第10期1374-1377,1382,共5页 Journal of Northeastern University(Natural Science)
基金 国家自然科学基金资助项目(61273078 61005032) 中央高校基本科研业务费专项资金资助项目(N1106040065032)
关键词 目标跟踪 均值漂移 稀疏主成分分析 自适应更新 加权中心 object tracking mean shift sparse principal component analysis adaptive update weighted center
  • 相关文献

参考文献9

  • 1Comaniciu D, Ramesh V, Meer P. Real-time tracking of non- rigid objects using mean shift [ C ]//IEEE Conference on Computer Vision and Pattern Recognition. Hilton Head:IEEE Computer Society,2000:142 - 149.
  • 2Comaniciu D, Ramesb V, Meer P. Kernel-based object tracking [ J ]. IEEE Transactions on Pattern Analysis and Machine Intelligence,2003,25 (2) :564 - 577.
  • 3彭宁嵩,杨杰,刘志,张风超.Mean-Shift跟踪算法中核函数窗宽的自动选取[J].软件学报,2005,16(9):1542-1550. 被引量:165
  • 4李冠彬,吴贺丰.基于颜色纹理直方图的带权分块均值漂移目标跟踪算法[J].计算机辅助设计与图形学学报,2011,23(12):2059-2066. 被引量:49
  • 5Ning J ,Zhang L ,Zhang D, et al. Robust object tracking using joint color-texture histogram [ J ]. International Journal of Pattern Recognition and Artificial Intelligence, 2009,23 ( 7 ) : 1245 - 1263.
  • 6Kwon J, Lee k. Visual tracking decomposition [ C ]//IEEE Conference on Computer Vision and Pattern Recognition. San Francisco : IEEE Computer Society,2010 : 1269 - 1276.
  • 7Aspremont A, Ghaoui L, Jordan M, et al. A direct formulation for sparse PCA using semidefinite programming [ J]. SIAM Review ,2007,49 ( 3 ) :434 - 448.
  • 8Babenko B,Yang M,Belongie S. Robust object tracking with online multiple instance learning [ J ]. IEEE Transactions on Pattern Analysis and Machine Intelligence,2011,33 (8) : 1619 - 1632.
  • 9Wang S, Lu H, Yang F. Superpixel tracking [ C ]//IEEE International Conference on Computer Vision. Barcelona: IEEE Computer Society,2011 : 1323 - 1333.

二级参考文献26

  • 1徐琨,贺昱曜,王卫亚.基于CamShift的自适应颜色空间目标跟踪算法[J].计算机应用,2009,29(3):757-760. 被引量:22
  • 2彭宁嵩,杨杰,刘志,张风超.Mean-Shift跟踪算法中核函数窗宽的自动选取[J].软件学报,2005,16(9):1542-1550. 被引量:165
  • 3常发亮,马丽,乔谊正.遮挡情况下基于特征相关匹配的目标跟踪算法[J].中国图象图形学报,2006,11(6):877-882. 被引量:16
  • 4常发亮,刘雪,王华杰.基于均值漂移与卡尔曼滤波的目标跟踪算法[J].计算机工程与应用,2007,43(12):50-52. 被引量:40
  • 5[1]Fukanaga K, Hostetler LD. The estimation of the gradient of a density function, with applications in pattern recognition. IEEE Trans. on Information Theory, 1975,21(1):32-40.
  • 6[2]Cheng Y. Mean shift, mode seeking and clustering. IEEE Trans. on Pattern Analysis and Machine Intelligence, 1995,17(8):790-799.
  • 7[3]Comaniciu D, Ramesh V, Meer P. Real-Time tracking of non-rigid objects using mean shift. In: Werner B, ed. IEEE Int'l Proc. of the Computer Vision and Pattern Recognition, Vol 2. Stoughton: Printing House, 2000. 142-149.
  • 8[4]Yilmaz A, Shafique K, Shah M. Target tracking in airborne forward looking infrared imagery. Int'l Journal of Image and Vision Computing, 2003,21 (7):623-635.
  • 9[5]Bradski GR. Computer vision face tracking for use in a perceptual user interface In: Regina Spencer Sipple, ed. IEEE Workshop on Applications of Computer Vision. Stoughton: Printing House, 1998. 214-219.
  • 10[6]Comaniciu D, Ramesh V, Meer P. Kernel-Based object tracking. IEEE Trans. on Pattern Analysis and Machine Intelligence, 2003,25(5):564-575.

共引文献211

同被引文献9

引证文献1

二级引证文献1

相关作者

内容加载中请稍等...

相关机构

内容加载中请稍等...

相关主题

内容加载中请稍等...

浏览历史

内容加载中请稍等...
;
使用帮助 返回顶部