期刊文献+

Eu-Ru共掺NiO-SnO_2复合纳米粒子薄膜的阻变特性 被引量:1

Resistive Switching of Eu-Ru Co-doped NiO-SnO_2 Composite Nanoparticle Thin Films
下载PDF
导出
摘要 通过低温水浴法制备了Eu-Ru共掺杂NiO-SnO_2复合纳米粒子,透射电镜图像显示纳米粒子粒径均匀,选区电子衍射表明结晶性差,所测晶面间距与SnO_2和NiO相应卡片数据一致,水热机理分析表明纳米粒子由NiO-SnO_2微观p-n结组成.原子力显微镜测试薄膜表面平均粗糙度约0.25 nm,由于薄膜太薄及样品结晶性差,XRD分析未见明显衍射峰.电学测试表明纳米粒子薄膜具有可重复双极阻变特性,阈值电压约1 V,开关比约500.薄膜高阻态电学输运符合缺陷俘获载流子所致空间电荷限制导电机制,低阻态呈欧姆特性,故阻变机理应为电荷俘获及再释. Eu-Ru co-doped NiO-SnO2 composite nanoparticle thin films were prepared using sol- hydrothermal spin-coating method. The film structural and electrical properties were characterized by transmission electron microscopy, atomic force microscopy and current-voltage measurements. The results indicate that the film surfaces are flat and smooth with average roughness of about 0. 25 nm. The data of Miller indices and interplanar spacings from the selected area electron diffraction are consistent with that from the XRD card of NiO or SnO2, and the hydrothermal mechanism also shows that nanoparticles are composed of microscale p-n junctions of NiO-SnO2. The nanoparticle films exhibit reproducible resistive switching with threshold voltage of about 1 V and on/off ratio of 500. The current-voltage measurements indicate that the conduction is governed by the Ohmic law for the low resistive state, while the high resistive state is dominated by the space charge limited conduction. The switching mechanism can be ascribed to the charge trapping/detrapping process induced by the applied threshold electrical field. K
出处 《东北大学学报(自然科学版)》 EI CAS CSCD 北大核心 2013年第10期1469-1472,共4页 Journal of Northeastern University(Natural Science)
基金 中央高校基本科研业务费专项资金资助项目(N110403001)
关键词 低温水浴法 NiO-SnO2复合纳米粒子 阻变特性 电荷俘获或释放 Eu-Ru共掺杂 sol-hydrothermal method NiO-SnO2 composite nanoparticles resistive switching charge trapping/detrapping Eu-Ru co-doping
  • 相关文献

参考文献9

  • 1王博峰.溶胶凝胶法制备锡、锌、镍复合薄膜结构与光电特性研究[D].沈阳:东北大学,2012.
  • 2LeeMD, Ho C H, Lo C K, et al. Effect of oxygen concentration on characteristics of NiOx-based resistance random access memory [ J ].IEEE Transactions on Magnetics, 2007,43(2) :939 -942.
  • 3Kim K M, Song S J, Kim G H, et al. Collective motion of conducting filaments in Pt/n-Type TiO2/p-Type NiO/Pt stacked resistance switching memory [ J ].Advanced Functional Materials ,2011,21 ( 9 ) : 1587 - 1592.
  • 4Chen X M, Zhou H, Wu G H, et al. Colossal resistive switching behavior and its physical mechanism of Pt/p-NiO/ n-Mg0.6Zn0. 40/Pt thin films [ J ]. Applied Physics A- Materials Science &Processing ,2011,104( 1 ) :477 - 481.
  • 5He L, Liao Z M, Wu H C, et al. Memory and threshold resistance switching in Ni/NiO core shell nanowires[J]. Nano Letters, 2011,11 ( 11 ) :4601 - 4606.
  • 6Sun J L,Zhao X C,Zhu J L. Metal-insulator transition in Au- NiO-Ni dual schottky nanojunctions [ J ]. Nanotechnology, 2009,20 (45) :455203-1 - 455203-4.
  • 7崔学军,李国军,任瑞铭.高分子网络微区沉淀法制备纳米NiO粉体[J].稀有金属材料与工程,2007,36(A01):76-79. 被引量:1
  • 8Xia Y D, He W Y, Chen L, et al. Field-induced resistive switching based on space-charge-limited current [ J ]. Applied Physics Letters, 2007,90 ( 2 ) : 022907 -1 - 022907-4.
  • 9Son D I,You C H,Kim W T,et al. Electrical bistabilities and memory mechanisms of organic bistable devices based on colloidal ZnO quantum dot-polymethylmethacrylate polymer nanocomposites [ J ]. Applied Physics Letters, 2009,94 ( 13 ) : 132103-1 - 132103-4.

二级参考文献3

同被引文献2

引证文献1

二级引证文献1

相关作者

内容加载中请稍等...

相关机构

内容加载中请稍等...

相关主题

内容加载中请稍等...

浏览历史

内容加载中请稍等...
;
使用帮助 返回顶部