期刊文献+

基于对偶四元数的卫星主从式编队姿轨跟踪的优化控制 被引量:4

Optimized tracking-control for attitude and orbit of satellite formation flying using dual quaternion
下载PDF
导出
摘要 在对偶四元数的框架下研究了主从式编队卫星相对姿态和相对位置跟踪控制的优化问题.首先,给出了用对偶四元数描述的编队卫星六自由度的相对运动模型.接着,把系统模型拆分为标称系统和扰动系统,对于标称系统,使用李雅普诺夫优化控制技术和轨迹跟踪优化的方法来得到非线性系统的次优解,而对于扰动系统,利用滑模控制来确保闭环系统的鲁棒性,为此把最优控制和滑模控制结合起来提出了一种优化的积分滑模控制器,并通过李雅普诺夫方法严格地证明了整个闭环系统的全局渐近稳定性.最后,通过数学仿真来验证设计方法的有效性和可行性,结果表明本文的方法能够实现编队卫星姿轨跟踪的精确控制,收敛速度较快,得到的性能指标更小,且对模型参数不确定性和外部有界干扰具有较强鲁棒性. This paper investigates the optimized tracking-control problem of the relative attitude and relative position between two satellites of a leader-follower satellite formation, in the framework of dual quaternion. First, a six degrees- of-freedom relative motion model of satellite formation flying (SFF) is introduced with dual quaternion. Then, the system model is divided into the nominal part and the disturbed part. For the nominal part, the Lyapunov optimizing control technique and the trajectory-following optimization are utilized to obtain a sub-optimal result of the nonlinear system. For the disturbed part, the sliding-mode control is adopted to ensure the robustness of the closed-loop system. Thus, an opti- mized integral sliding-mode controller that combines optimal control and sliding-mode control is developed. The resulting closed-loop system is proved to be globally asymptotically stable by using Lyapunov method. Numerical simulations are performed to demonstrate the effectiveness and validity of the proposed controller; the results indicate that the proposed controller can realize accurate tracking-control of the relative attitude and relative position for SFF with fast convergence rate, small performance indices, and robustness to model uncertainties and bounded external disturbances.
出处 《控制理论与应用》 EI CAS CSCD 北大核心 2013年第9期1069-1078,共10页 Control Theory & Applications
基金 国家"863"计划资助项目(2011AA7022019) 高分辨率对地观测系统重大专项资助项目(GFZX04010801)
关键词 优化的积分滑模控制 跟踪控制 李雅普诺夫优化控制 轨迹跟踪优化 李雅普诺夫方法 对偶四元数 编队卫星 optimized integral sliding mode control tracking-control Lyapunov optimizing control trajectoryfollowing optimization Lyapunov methods dual quaternion satellite formation flying
  • 相关文献

参考文献3

二级参考文献75

  • 1JunfengLi XinMeng YunfengGao XiangLi.Study on relative orbital configuration in satellite formation flying[J].Acta Mechanica Sinica,2005,21(1):87-94. 被引量:10
  • 2张治国,李俊峰,宝音贺西.卫星编队飞行指向跟踪姿态控制[J].清华大学学报(自然科学版),2006,46(11):1914-1917. 被引量:5
  • 3Leitner J, Bauer F, Folta D, et al. Distributed spacecraft systems develop new GPS capability [J]. GPS World: Formation Flying in Space, 2002: 22- 31.
  • 4Sultan C, Seereeram S, Mehra R K, et al. Energy optimal reconfiguration for large scale formation flying[C]//Proceeding of the 2004 American ,Control Conf. Boston, MA:[s.n.], 2004: 2986-2991.
  • 5Garcia I, How J P. Trajectory optimization for satellite reconfiguration maneuvers with position and attitude constraints[C]//Proceedings of the American Control Conf. Portland, OR:[s.n.], 2005, 2: 889- 894.
  • 6Naasz B J, Berry M M, Kim H Y, et al. Integrated orbit and attitude control for a nanosatellite with power constraints [J]. Advances in the Astronautical Sciences, 2003, 114, 1-18.
  • 7Wong H, Pan H, Kapila V. Output feedback control for spacecraft formation flying with coupled translation and attitude dynamics[C]//Proceedings of the 2005 American Control Conf. Portland, OR : [s. n. ], 2005: 2419- 2426.
  • 8Liu H, Li J F, Hexi B Y. Sliding mode control for low-thrust earth-orbiting spacecraft formation maneuvering [J]. Aerospace Science and Technology, 2006, 10(7): 636-643.
  • 9Liu H T, Shan J J, Dong S. Adaptive synchronization control of multiple spacecraft formation flying [J]. Journal of Dynamic Systems, Measurement and Control, Transactions of the ASME, 2007, 129(3) 337-342.
  • 10Tournes C, Shtessel Y: Automatic docking using optimal control and second order sliding mode controll-C]//AIAA Guidance, Navigation, and Control Conference. Hilton Head, South Carolina: [s. n. ], 2007, 1: 522-538.

共引文献28

同被引文献42

  • 1李云翀,何克忠.基于激光雷达的室外移动机器人避障与导航新方法[J].机器人,2006,28(3):275-278. 被引量:33
  • 2ALESSANDRO F, LUCA 1, DANIELE N. MultiRobot systems: a classification focused on coordination [J]. IEEE Transactions on Sys- tem Man and Cybernetics. Part B: Cybernetics, 2004, 34(5): 2015 -2028.
  • 3TUCKER B, RONALD C A. Behavior-based formation control for multirobot teams [J]. IEEE Transactions on Robotics and Automa- tion. 1998, 14(6): 926- 939.
  • 4JONATHAN L, RANDAL B, BRETT J Y. A decentralized approach to formation maneuvers [J I. IEEE Transactions on Robotics and Au- tomation, 2003, 19(6): 933 - 941.
  • 5WANG Y, YAN W, LI J. Passivity-based lormation control of au- tonomous underwater vehicles[ J]. lET Control Theory & Applica- tions, 2012, 6(4): 518- 525.
  • 6WEI R, NATHAN S. Distributed coordination architecture for multi- robot formation control [J]. Robotics and Autonomous Systems, 2008, 56(4): 324 - 333.
  • 7JAWHAR G, HASAN M, MAAROUF S. Formation path following control of unicycle-type mobile robots [J]. Robotics and Autonomous Systems, 2010, 58(5): 727 -736.
  • 8HASAN M, JAWHAR G, MAAROUF S. Nonlinear coordination control for a group of mobile robots using a virtual structure [J]. Mechatronics, 2011, 21(7): 1147 - 1155.
  • 9LUCA C, FABIO M, DOMENICO P. Leader-follower formation con- trol of nonholonomic mobile robots with input constraints [J]. Auto- matica, 2008, 44(5): 1343 - 1349.
  • 10SHAO J, XIE G, WANG L. Leader-tollowing formation control of multiple mobile vehicles [J]. lET Control Theory and Applications, 2007, 1(2): 545- 552.

引证文献4

二级引证文献29

相关作者

内容加载中请稍等...

相关机构

内容加载中请稍等...

相关主题

内容加载中请稍等...

浏览历史

内容加载中请稍等...
;
使用帮助 返回顶部