期刊文献+

高分影像在改进的最优分割尺度下的多层次混合分类 被引量:4

A Hybrid mutli-hierarchical classification based on an improved optimal segmentation parameter for high resolution remote sensing image
下载PDF
导出
摘要 针对高分辨率遥感影像分类时的同谱异物和面向对象分类的最优分割尺度难以确定的问题,提出一种混合的分类方法。首先采用一种改进的目标函数来计算每种类别的最优分割尺度,实现对高分辨率影像的多尺度分割;其次,在每种类别的最优分割尺度下构建多层次分类;最后,在该多层次结构中,采取基于知识规则的分类和SVM分类器结合来进行分类。实验结果表明,本文方法总体精度和Kappa系数较其他方法都有明显的提高。 In the high resolution remote sensing image , different objects have the same spectrum and the optimal se^nentation parameter is difficult to be determined,a hybrid classification method is proposed. Firstly, using an improved objective function to calculate the optimal segnentatian parameter of each category, in order to realize the multi - resolution segmentation in high resolution image; Secondly, multi - hierarchy classification is built in each optimal segmentation scale; Finally, in the multi - hierarchy structure, the classification based on knowledge rules and the SVM classifier are combined for classification. Results show that the overall accuracy and Kappa coefficient are superior to other methods.
出处 《激光杂志》 CAS CSCD 北大核心 2013年第5期19-22,共4页 Laser Journal
基金 教育部促进与美大地区科研合作与高层次人才培养项目
关键词 面向对象 高分辨率 多尺度分割 最优分割尺度 多层次分类 object-oriented high resolution image multi - resolution segmentation optimal parameter segmentation muhi - hierarchy classification
  • 相关文献

参考文献20

  • 1Blaschke T. Object based image analysis for remote sensing[J]. ISPRS Journal of Photogrammetry and Remote Sensing,2010,65:2- 16.
  • 2Blaschke T, Burnett C, Pekkarinen A. Image segmentation methods for object- based analysis and classification[M].//Remote sensing image analysis: Including the spatial domain. Springer Netherlands,2004,211 - 236.
  • 3Zhang X, Feng X, Jiang H. Object- oriented method for urban vegetation mapping using IKONOS imagery[J]. International Journal of Remote Sensing, 2010,31(1) : 177 - 196.
  • 4Moiler M, Lymbumer L, Volk M. The comparison index: A tool for assessing the accuracy of image segnentation[ J]. International Journal of Applied Earth Observation and Geoinformation, 2007,9 (3) : 311 - 321.
  • 5Maxwell T L, Zhang Y. A fuzzy approach to supervised segmentation parameter selection for object - based classification [ C ].//Optics & Photonics 2005. International Society for Optics and Photonics, 2005, 590910 - 590910 - 11.
  • 6M. MoeUer, L.Lymbumer, and M. Volk, The comparison index: A tool for assessing the accuracy of image segmentation," Int. J. Appl. Earth Obs. Geoinf. ,2007,9(3) :311 - 321.
  • 7Espindola G M, Camara G, Reis I A, et al. Parameter selection for region growing image segmentation algorithms using spatial autocorrelation[J]. International Journal of Remote Sensing, 2006, 27 (14) : 3035 - 3040.
  • 8Martha T R, Kerle N, van Westen C J, et al. Segment optimization and data - driven thresholding for knowledge - based landslide detection by object- based image analysis[J]. Geoseience and Remote Sensing, IEEE Transactions on, 2011, 49(12): 4928-4943.
  • 9胡文亮,赵萍,董张玉.一种改进的遥感影像面向对象最优分割尺度计算模型[J].地理与地理信息科学,2010,26(6):15-18. 被引量:21
  • 10王惠英,苏伟,周军其.基于多分类器组合面向对象遥感影像信息提取方法[J].测绘工程,2009,18(5):22-26. 被引量:12

二级参考文献75

共引文献43

同被引文献53

引证文献4

二级引证文献24

相关作者

内容加载中请稍等...

相关机构

内容加载中请稍等...

相关主题

内容加载中请稍等...

浏览历史

内容加载中请稍等...
;
使用帮助 返回顶部