期刊文献+

二维非负偏最小二乘在人脸识别中的应用

Two dimensional nonnegative partial least squares for face recognition
下载PDF
导出
摘要 传统的基于统计的子空间学习算法如主成分分析,通过学习只能得到一系列特征脸,忽略了人脸识别中重要的局部信息(如眼睛、鼻子)。而利用到类别信息的算法如线性判别分析,也会因为小样本问题而有所影响。为了解决这些问题,结合二维偏最小二乘与非负矩阵分解的非负性思想提出二维非负偏最小二乘(Two-Dimensional Nonnegative Partial Least Squares,2DNPLS)算法。其核心思想是在提取人脸特征时加入了非负性约束,使得2DNPLS不仅拥有偏最小二乘算法加入类别信息带来的分类效果,还保留了图像矩阵的内部结构信息,而且还使得到的基矩阵具有非负的局部的可解释性。在ORL,Yale人脸库中的实验结果表明,该算法从时间上和识别率上均优于人脸识别的主流算法。 Traditional subspace statistic methods, such as Principal Component Analysis (PCA) can only get a series of eigen face through learning, the available local features (eyes, nose) for face recognition are ignored. However, these methods incorpo- rating the category information such as Linear Discriminant Analysis (LDA), face small sample problems. In order to take over these disadvantages, the paper proposes a novel approach to Extract the facial features called Two-Dimension Nonnegative Partial Least Squares (2DNPLS). The main idea of the approach is grabbing the local features via adding the constraint of nonnegative to 2DPLS, which makes the approach gain not only the advantages of 2DPLS, incorporating both inherent structure and category information of images, but also the local features, having nonnegative interpretability. For evaluating the approach' s performance, a series of experiments are conducted on two famous face image databases ORL, Yale face databases, which demonstrate that the proposed approach outperforms the state-of-art algorithms.
出处 《计算机工程与应用》 CSCD 2013年第20期193-197,221,共6页 Computer Engineering and Applications
基金 国家自然科学基金(No.61173131) 中央高校基金(No.CDJZR12090002 No.CDJXS11100046 No.CDJXS11181162)
关键词 二维偏最小二乘 非负性 人脸识别 二维非负偏最小二乘 Two Dimension Partial Least Squares (2DPLS) nonnegative face recognition Two Dimension Nonnegative PartialLeast Squares(2DNPLS )
  • 相关文献

参考文献2

二级参考文献9

  • 1孙宁,冀贞海,邹采荣,赵力.基于2维偏最小二乘法的图像局部特征提取及其在面部表情识别中的应用[J].中国图象图形学报,2007,12(5):847-853. 被引量:7
  • 2Barker M L.Parlial least squares for discrimination[D].tniversity of Kentucky, 2000.
  • 3Liu Yushu,Rayens W.PLS and dimension reduction for classification[J].Computational Statistics,2007,22: 189-208.
  • 4Sun Q S,Jing Z,Liu Y,et al.A novel feature fusion method based on partial least squares regression[C]//Lecture notes in Computer Science:The third International Conference on Advances in Pattern Recognition ( Bath, UK ). Heidelgerg, Berlin : Springer-Verlag, 2005, 3686 : 268-277.
  • 5Barker M,Rayens W.Partial least squares for discrimination[J].Jourhal of Chemometries, 2003,17 : 166-173.
  • 6Arenas-Garcia J,Petersen K B,Hansen L K.Sparse kernel orthonormalized PLS for feature extraction in large data sets[M]//Advances in Neural Information Processing Systems 19.Cambridge,MA:MIT Press, 2007.
  • 7Yang Jian,Zhang David,Frangi A F,et al.Two dimensional PCA:a new approach to appearance-based face representation and recognition[J].IEEE Transactions on Pattern Analysis and Machine Intelligence, 2004,24( 1 ) : 131 - 137.
  • 8Zou Cai-rong,Sun Ning,Ji Zhen-hai,et al.2DCCA:A novel method for small sample size face recognition[C]//IEEE Workshop on Applications of Computer Version,2007.
  • 9杨茂龙,孙权森,夏德深.二维共轭正交偏最小二乘分析及图像识别应用[J].计算机工程与应用,2008,44(29):36-39. 被引量:5

共引文献6

相关作者

内容加载中请稍等...

相关机构

内容加载中请稍等...

相关主题

内容加载中请稍等...

浏览历史

内容加载中请稍等...
;
使用帮助 返回顶部