摘要
为了提高推荐系统挖掘用户感兴趣的冷门项目的能力,提出一种改进的协同过滤推荐算法。在传统算法基础上考虑项目流行度的影响,将其作为权重因子引入到相似性计算和推荐过程中,以提高用户相似性计算的可靠性和冷门项目在最终的项目推荐过程中的影响力。典型数据集上的对比实验表明,该算法能够在保持甚至提高推荐准确度的前提下,有效挖掘到用户感兴趣的冷门项目。
To improve the recommendation systems' ability of mining unpopular items,an improved collaborative filtering algorithm is proposed.Based on traditional algorithm,items' popularity is considered as a weighting factor in similarity calculating and recommendation process to boost the reliability of user-similarity calculating and the influence of unpopular items in final recommending.Comparative experiments on typical dataset show that the algorithm is able to mine unpopular items effectively under the premise of maintaining or even improving recommendation accuracy.
出处
《计算机工程与设计》
CSCD
北大核心
2013年第10期3497-3501,共5页
Computer Engineering and Design
基金
国家自然科学基金项目(10901062)
福建省高等学校杰出青年科研人才培育计划基金项目(11FJPY01)
福建省高等学校新世纪优秀人才支持计划基金项目(2012FJ-NCET-ZR01)
关键词
推荐
协同过滤
冷门项目
项目流行度
权重
recommend
collaborative filtering
unpopular item
item popularity
weight