期刊文献+

基于项目流行度的协同过滤TopN推荐算法 被引量:18

Collaborative filtering TopN-recommendation algorithm based on item popularity
下载PDF
导出
摘要 为了提高推荐系统挖掘用户感兴趣的冷门项目的能力,提出一种改进的协同过滤推荐算法。在传统算法基础上考虑项目流行度的影响,将其作为权重因子引入到相似性计算和推荐过程中,以提高用户相似性计算的可靠性和冷门项目在最终的项目推荐过程中的影响力。典型数据集上的对比实验表明,该算法能够在保持甚至提高推荐准确度的前提下,有效挖掘到用户感兴趣的冷门项目。 To improve the recommendation systems' ability of mining unpopular items,an improved collaborative filtering algorithm is proposed.Based on traditional algorithm,items' popularity is considered as a weighting factor in similarity calculating and recommendation process to boost the reliability of user-similarity calculating and the influence of unpopular items in final recommending.Comparative experiments on typical dataset show that the algorithm is able to mine unpopular items effectively under the premise of maintaining or even improving recommendation accuracy.
作者 郝立燕 王靖
出处 《计算机工程与设计》 CSCD 北大核心 2013年第10期3497-3501,共5页 Computer Engineering and Design
基金 国家自然科学基金项目(10901062) 福建省高等学校杰出青年科研人才培育计划基金项目(11FJPY01) 福建省高等学校新世纪优秀人才支持计划基金项目(2012FJ-NCET-ZR01)
关键词 推荐 协同过滤 冷门项目 项目流行度 权重 recommend collaborative filtering unpopular item item popularity weight
  • 相关文献

参考文献2

二级参考文献35

  • 1Xu HL,Wu X,Li XD,Yan BP.Comparison study of Internet recommendation system.Journal of Software,2009,20(2):350-362 (in Chinese with English abstract).http://www.jos.org.cn/1000-9825/3388.htm[doi:10.3724/SP.J.1001.2009.03388].
  • 2Marlin B.Collaborative Filtering:A machine learning perspective[MS.Thesis].Toronto:University of Toronto,2004.
  • 3Hofmann T.Latent semantic models for collaborative filtering.ACM Trans.on Information System,2004,22(1):89-115.[doi:10.1145/963770.963774].
  • 4Blei DM,Ng AY,Jordan MI.Latent Dirichlet allocation.Journal of Machine Learning Research,2003,3(3):993-1022.[doi:10.1162/ jmlr.2003.3.4-5.993].
  • 5Netflix update:Try this at home.2006.http://sifter.org/~simon/journal/20061211.html.
  • 6Zhang S,Wang WH,Ford J,Makedon F.Learning from incomplete ratings using non-negative matrix factorization.In:Ghosh J,ed.Proc.of the 6th SIAM Conf.on Data Mining.Bethesda:SIAM,2006.549-553.
  • 7Cheng YZ,Church GM.Biclustering of expression data.In:Bourne PE,ed.Proc.of the 8th Int'l Conf.on Intelligent Systems for Molecular Biology.La Jolla:AAAI Press,2000.93-103.[doi:10.1016/j.ipm.2008.12.004].
  • 8Cheng G,Wang F,Zhang CS.Collaborative filtering using orthogonal nonnegative matrix tri-factorization.Information Processing & Management,2009,45(3):368-379.
  • 9Shan HH,Banerjee A.Bayesian co-clustering.In:Altman R,ed.Proc.of the ICDM 2008.Washington:IEEE Computer Society Press,2008.530-539.
  • 10Dhillon SI.Co-Clustering documents and words using bipartite spectral graph partitioning.In:Lee D,ed.Proc.of the 7th ACM SIGKDD.New York:ACM Press,2001.269-274.

共引文献223

同被引文献112

引证文献18

二级引证文献65

相关作者

内容加载中请稍等...

相关机构

内容加载中请稍等...

相关主题

内容加载中请稍等...

浏览历史

内容加载中请稍等...
;
使用帮助 返回顶部