期刊文献+

基于表面等离激元的量子相干效应的理论研究 被引量:3

A theoretical study of plasmonic-based quantum interference effects
原文传递
导出
摘要 起源于金属中自由电子集体振荡的表面等离激元,具有超小的光学模式体积和亚波长局域的近场增益,为纳米尺度上研究光和物质相互作用带来新的机遇.共振的纳米金属结构的近场区域,具有各向异性的珀塞尔系数,并且可以为量子体系提供近场激发.我们理论上演示了基于表面等离激元结构的单分子共振荧光、原子布居数的本征量子拍频及其在表面等离激元结构中的纳米尺度上的实现、表面等离激元诱导的各向异性珀塞尔系数导致的亚波长尺度自发辐射谱线的变化.这些结果在超紧凑的有源量子器件中有潜在应用. Surface plasmons which originate from collective oscillations of free electrons in metals, associated with ultrasmall optical mode volume and subwavelength-confined field enhancement, bring new possibilities for research on nanoscale light- matter interactions. The near zone of a resonant plasmon nanostructure has anisotropic Purcell factors and can provide near field excitation for quantum systems. We theoretically demonstrated plasmonic-based resonance fluorescence of single molecules, intrinsic quantum beats of atomic populations and their nanoscale realization through the resonant plasmonic antenna, and surface-plasmon-induced modification on the spontaneous emission spectrum via subwavelength-confined anisotropic Purcell factor. These results may open some perspectives for applications in ultracompact active quantum devices.
出处 《中国科学:物理学、力学、天文学》 CSCD 北大核心 2013年第10期1120-1134,共15页 Scientia Sinica Physica,Mechanica & Astronomica
基金 国家重点基础研究发展计划(编号:2013CB328700) 国家自然科学基金(批准号:91121018 11374025 91221304 11121091)资助项目
关键词 表面等离激元 珀塞尔系数 量子相干 量子拍频 共振荧光 自发辐射 surface plasmons, Purcell factor, quantum interference, quantum beats, resonance fluorescence, spontaneous emission
  • 相关文献

参考文献66

  • 1Raether H. Surface Plasmons. Berlin Heidelberg: Springer-Verlag, 1988.
  • 2Muhlschlegel P, Eisler H J, Martin O J F, et al. Resonant optical antennas. Science, 2005, 308(5728): 1607-1609.
  • 3Barnett S M, Huttner B, Loudon R, et al. Decay of excited atoms in absorbing dielectrics. J Phys B, 1996, 29(16): 3763-3781.
  • 4Brongersma M L, Shalaev V M. The case for plasmonics. Science, 2010, 328(5977): 440-441.
  • 5Wokaun A, Gordon J P, Liao P F. Radiation damping in surface-enhanced raman scattering. Phys Rev Lett, 1982, 48(14): 957-960.
  • 6Lal S, Link S, Halas N J. Nano-optics from sensing to waveguiding. Nat Photon, 2007, 1(11): 641-648.
  • 7Shan X, Díez-Pérez I, Wang L, et al. Imaging the electrocatalytic activity of single nanoparticles. Nat Nanotech, 2012, 7(10): 668-672.
  • 8Kulkarni A P, Noone K M, Munechika K, et al. Plasmon-enhanced charge carrier generation in organic photovoltaic films using silver nanoprisms. Nano Lett, 2010, 10(4): 1501-1505.
  • 9Derkacs D, Lim S H, Metheu P, et al. Improved performance of amorphous silicon solar cells via scattering from surface plasmon polaritons in nearby metallic nanoparticles. Appl Phys Lett, 2006, 89(9): 093103.
  • 10Chang D E, Lukin M D. Quantum and nonlinear optics with surface plasmons: Dependence of propagation losses on temperature. Proc of SPIE,2008, 6904: I9040.

同被引文献14

引证文献3

二级引证文献3

相关作者

内容加载中请稍等...

相关机构

内容加载中请稍等...

相关主题

内容加载中请稍等...

浏览历史

内容加载中请稍等...
;
使用帮助 返回顶部