期刊文献+

基于神经网络的酒泉风电基地超短期风电功率预测方法 被引量:9

Ultra-Short-Term Wind Power Prediction Method Based on Neural Network for Jiuquan Wind Power Base
原文传递
导出
摘要 风电的随机性和波动性给电力系统调度运行带来了一定的困难,以我国首个千万kW级风电基地甘肃酒泉风电基地为例,研究了基于神经网络的酒泉风电基地超短期风电功率预测方法,并对风速和风电功率实时数据进行了分析处理。在此基础上,基于神经网络算法和贝叶斯规则进行了超短期预测建模过程分析。最后,通过预测结果对预测模型进行了验证分析,验证结果表明预测模型合理、预测精度高,该预测结果可以为调度运行人员提供参考。 The randomness and volatility of wind power bring difficulties for power system dispatching and operation. Taking Jiuquan wind power base the first million kilowatt wind power base in China as an example, the ultra-short-term wind power prediction method based on neural network was studied, which analyzes and processes the real-time data of wind speed and wind power. On this basis, the modeling process of ultra-short-term prediction was analyzed based on the neural network algorithm and Bayes rule. Finally, the prediction model was validated through prediction results. The results show that the prediction model is reasonable, and has a high prediction accuracy, which can also provide a reference for dispatchers.
出处 《电力建设》 2013年第9期1-5,共5页 Electric Power Construction
基金 国家高技术研究发展计划(863计划)(2011AA05A104) 2009年中国电机工程学会"电力青年科技创新资助项目"
关键词 风电功率预测 超短期预测 神经网络 预测模型 wind power prediction ultra-short-term prediction neural network prediction model
  • 相关文献

参考文献18

二级参考文献184

共引文献1469

同被引文献115

  • 1高亚静,吉旺威,陶珺函,纪巍,谢庆.考虑多重影响因素的负荷同时系数预测方法[J].中国电机工程学报,2013,33(S1):85-91. 被引量:6
  • 2林子钊.基于数据挖掘技术的电力网络参数估计方法[J].电力建设,2007,28(1):67-70. 被引量:1
  • 3宋九飞.影响500kV送电线路工程造价敏感因素分析[J].电力建设,2007,28(2):20-22. 被引量:13
  • 4De Rijcke S, Ergun H, Van Hertem D, et al. Grid impact of voltage control and reactive power support by wind turbines equipped with direct-drive synchronous machines [J]. IEEE Transactions on Sustainable Energy ,2012,3 (4) :890-898.
  • 5Kumar V S S, Reddy K K, Thukaram D. Coordination of reactive power in grid-connected wind farms for voltage stability enhancement[ Jl. IEEE Transactions on Power Systems, 2014,29 (5) :2381-2390.
  • 6GB/T19963--2011风电场接人电力系统技术规定[s].北京:中国标准出版社,2011.
  • 7Santos-Martin D, Arnaltes S, Rodriguez Amenedo J L. Reactive power capability of doubly fed asynchronous generators [ J ~. Electric Power Systems Research ,2008,78 ( 11 ) : 1837-1840.
  • 8Saaty T L. The analytic hierarchy process [ M 1. New York: Mc Graw-Hill Inc, 1980 : 12-15.
  • 9Turgut O E, Turgut M S, Coban M T. Chaotic quantum behaved particle swarm optimization algorithm for solving nonlinear system of equations [ J 1. Computers & Mathematics with Applications, 2014,68 (4) :508-530.
  • 10Meng Ke, Wang Honggang, Dong Zhaoyang, et al. Quantum- inspired particle swarm optimization for valve-point economic load dispatch E J]. IEEE Transactions on Power Systems, 2010,25 (1): 215-222.

引证文献9

二级引证文献125

相关作者

内容加载中请稍等...

相关机构

内容加载中请稍等...

相关主题

内容加载中请稍等...

浏览历史

内容加载中请稍等...
;
使用帮助 返回顶部