摘要
讨论一类系数为对数函数的Riccati微分方程y'=P(x)y2+Q(x)y+R(x),得到了此类方程特解的一些求法和特解存在的条件,并给出了相关应用.
The Riccati differential equations y^1 = P ( x ) y^2 + Q ( x ) y + R ( x ) , a coefficient of which is logarithmic function, are discussed. Several special solutions and existence conditions are derived. The related applications are also addressed.
出处
《西安文理学院学报(自然科学版)》
2013年第4期33-34,共2页
Journal of Xi’an University(Natural Science Edition)
基金
河南省教育厅"十二五"规划项目[2011]-JKGHAD-0309
关键词
对数型函数
RICCATI微分方程
特解
存在条件
logarithmic type function
Riccati differential equation
special solution
existence condition