期刊文献+

Invariant subspaces and conditional Lie-Bcklund symmetries of inhomogeneous nonlinear difusion equations 被引量:10

Invariant subspaces and conditional Lie-Bcklund symmetries of inhomogeneous nonlinear difusion equations
原文传递
导出
摘要 The inhomogeneous nonlinear diffusion equation is studied by invariant subspace and condi- tional Lie=Bgcklund symmetry methods. It is shown that the equations admit a class of invariant subspaces governed by the nonlinear ordinary differential equations, which is equivalent to a kind of higher=order conditional Lie-B^icklund symmetries of the equations. As a consequence, a number of new solutions to the inhomogeneous nonlinear diffusion equations are constructed explicitly or reduced to solving finite-dimensional dynamical sys- tems. The inhomogeneous nonlinear difusion equation is studied by invariant subspace and conditional Lie-Bcklund symmetry methods.It is shown that the equations admit a class of invariant subspaces governed by the nonlinear ordinary diferential equations,which is equivalent to a kind of higher-order conditional Lie-Bcklund symmetries of the equations.As a consequence,a number of new solutions to the inhomogeneous nonlinear difusion equations are constructed explicitly or reduced to solving fnite-dimensional dynamical systems.
出处 《Science China Mathematics》 SCIE 2013年第11期2187-2203,共17页 中国科学:数学(英文版)
基金 supported by National Natural Science Foundation of China for Distinguished Young Scholars(Grant No.10925104) the PhD Programs Foundation of Ministry of Education of China(Grant No.20106101110008) the United Funds of NSFC and Henan for Talent Training(Grant No.U1204104)
关键词 inhomogeneous nonlinear diffusion equation invariant subspace conditional Lie-B/icklund sym-metry functionally generalized separable solution 非线性扩散方程 不变子空间 对称性 非齐次 非线性常微分方程 动力系统 d方程 有限维
  • 相关文献

参考文献3

二级参考文献18

  • 1[1]M.L. Gandarias, J. Phys. A: Math. Gen. 29 (1996) 607.
  • 2[2]M.L. Gandarias, J. Phys. A: Math. Gen. 29 (1996) 5919.
  • 3[3]A.S. Fokas and Q.M. Liu, Phys. Rev. Lett. 72 (1994)3293.
  • 4[4]R.Z. Zhdanov, J. Phys. A: Math. Gen. 28 (1995) 3841.
  • 5[5]C.Z. Qu, Stud. Appl. Math. 99 (1997) 107.
  • 6[6]C.Z. Qu, IMA J. Appl. Math. 62 (1999) 283.
  • 7[7]C.Z. Qu, J. Aust. Math. Soc. B41 (1999) 1.
  • 8[8]C.Z. Qu, Commun. Theor. Phys. (Beijing, China) 31(1999) 581.
  • 9[9]C.Z. Qu, S.L. Zhang, and R.C. Liu, Physica D144 (2000)97.
  • 10[10]P.G. Estevez and C.Z. Qu, J. Math. Anal. Appl. 275(2002) 44.

共引文献45

同被引文献24

引证文献10

二级引证文献3

相关作者

内容加载中请稍等...

相关机构

内容加载中请稍等...

相关主题

内容加载中请稍等...

浏览历史

内容加载中请稍等...
;
使用帮助 返回顶部