期刊文献+

结合几何划分技术和最大期望值/最大边缘概率算法的彩色图像分割 被引量:5

Color image segmentation using geometry tessellation technique and EM /MPM algorithm
原文传递
导出
摘要 基于区域和统计的彩色图像分割方法,提出了一种结合Voronoi划分技术、最大期望值(EM)和最大边缘概率(MPM)算法的彩色图像分割方法。首先利用Voronoi几何划分将图像域划分成不同的子区域,并假设每个子区域内的像素强度满足独立同一的概率分布,在此基础上建立彩色图像模型;利用上述模型,在贝叶斯理论架构下建模图像分割问题,然后结合EM/MPM算法进行图像分割。该方法将基于像素的马尔可夫随机场(MRF)模型扩展到基于区域的MRF,并且能同时有效地获取模型参数估计和基于区域的彩色图像最优分割。采用本文算法分别对真实彩色图像和合成彩色图像进行分割实验,定性和定量的测试结果验证了本文算法的有效性、可靠性和准确性。 In this paper, we propose a new color image segmentation approach based on the combined use of Voronoi tessellation and the (EM/MPM) algorithm. Voronoi tessellation is a well-established tool for the partition of a geometric re- gion in stochastic geometry theory. Therefore, it is employed for partitioning the image domain into Voronoi polygons corre- sponding to the components of homogeneous regions that need to be segmented. The EM/MPM algorithm, which integrates the EM algorithm for parameter estimation with the MPM algorithm for segmentation, is also proposed to address color image segmentation. Quantitative experimental results on a synthetic color image show the performance of the proposed approach. Experiments have also been carried out on real world color images in order to validate the proposed approach.
出处 《中国图象图形学报》 CSCD 北大核心 2013年第10期1270-1278,共9页 Journal of Image and Graphics
基金 国家自然科学基金项目(41271435) 国家海洋局海洋溢油鉴别与损害评估技术重点实验室基金项目(201211)
关键词 几何划分 最大期望值(EM) 最大边缘概率(MPM) 彩色图像 图像分割 geometry tessellation expectation maximization (EM) maximization of the posterior marginal (MPM) colorimage segmentation
  • 相关文献

参考文献15

  • 1周奇年,王廷波,李文书.区域信息和水平集方法的图像分割[J].中国图象图形学报,2011,16(11):2002-2008. 被引量:7
  • 2Jain S, Neal R M. A split-merge Markov chain monte carlo pro?cedure for the dirichlet process mixture model[J].Journal of Computational and Graphical Statistics , 2004, 13( I): 158-182.
  • 3齐美彬,杨立宾,蒋建国.自适应权值的MRF分割与跟踪方法[J].中国图象图形学报,2011,16(4):572-578. 被引量:3
  • 4Prados-Sure B, Charnorro-MartnezJ, Sanchez D. Region-based fit of color hOI1'lOgeneity measures for fuzzy image segmentation[J]. Fuzzy Sets and Systems, 2007, 158(3): 215-229.
  • 5Kabe A, Boots B, Sugihara K. Spatial Tessellations: Concepts and Applications of Voronoi Diagrams[M]. 2nd ed. Chichester: John Wiley & Sons, 1999,43-106.
  • 6Green P 1. ReversibleJump Markov clu ?. in monte carlo computa?tion and bayesian model determination[J]. Biornetrika , 1995, 82(4): 711-732.
  • 7Dryden 1 L, Farnoosh R, Taylor C C. Image segmental ion using Voronoi polygons and MCMC, with application to muscle fibre images[J].Journal of Applied Statistics , 2006, 33(6): 609- 622.
  • 8MllerJ, Skare . Bayesian image analysis with coloured Voronoi tessellation and a view to applications in reservoir model?ing[J]. Statistical Modelling, 2001, 1(3): 213-232.
  • 9Li Y, Li 1. Segmentation ofSAR intensity imagery with a Voronoi tessellation, Bayesian inference, and reversibleJump MCMC al?gorithm[J]. 1 EEE Transactions on Geoscience and Remote Sensing, 2010, 48(4): 1872-1881.
  • 10Comer M L, Delp E 1. The EM/MPM algorithm for segmentation of texture images: analysis and future experimental results[J]. IEEE Transactions on Image Processing, 2000, 9 (10): 1731- 1744.

二级参考文献22

  • 1余鹏,封举富.基于高斯混合模型的纹理图像分割[J].中国图象图形学报(A辑),2005,10(3):281-285. 被引量:27
  • 2代科学,李国辉,涂丹,袁见.监控视频运动目标检测减背景技术的研究现状和展望[J].中国图象图形学报,2006,11(7):919-927. 被引量:169
  • 3金芳,李君波,杨勇.基于模板匹配与运动预测的跟踪算法研究[J].微计算机信息,2007,23(19):313-314. 被引量:10
  • 4Zuo Junyi,Zhao Chunhui,Pan Quan,et al.A novel binary image filtering algorithm based on information entropy[C]//Proceedings of the 6th World Congress on Intelligent Control and Automation.Washington DC,USA:IEEE,2006:10375-10379.
  • 5Yaakov T,Averbuch.A Region-based MRF model for unsupervised segmentation of moving objects in Image sequences[C]//Computer Society Conf.on Computer Vision and Pattern Recognition.Washington DC,USA:IEEE Computer Socity,2001:889-896.
  • 6Wang D M.Unsupervised video segmentation based on watersheds and temporal tracking[J].IEEE Transactions on Circuits and System for Video Technology,1998,8(5):539-546.
  • 7Zhou Shaohua,Chellappa R,Moghaddam B.Visual tracking and recognition using appearance-adaptive models in particle filters[J].IEEE Transactions on Image Processing,2004,13(11):1491-1506.
  • 8Porkili F.A fast way to extract histograms in Cartesian spaces[C]//Proceedings of the IEEE Conf.on Computer Vision and Pattern Recognition (CVPR).Washington DC,USA:IEEE Computer Socity,2005:829-836.
  • 9Adam A,Rivlin E,Shimshoni I.Robust fragments-based tracking using the integral histogram[C]//Proceedings of the IEEE Computer Society Conference on Computer Vision and Pattern Recognition (CVPR).Washington,DC,USA:IEEE Computer Soc ity,2006:798-805.
  • 10Kass M, Witkin A, Terzopoulos D. Snakes : active contour models[J]. Computer Vision, 1987, 1(4) : 321.

共引文献12

同被引文献71

  • 1郑玮,康戈文,陈武凡,李小文.基于模糊马尔可夫随机场的无监督遥感图像分割算法[J].遥感学报,2008,12(2):246-252. 被引量:17
  • 2林开颜,吴军辉,徐立鸿.彩色图像分割方法综述[J].中国图象图形学报(A辑),2005,10(1):1-10. 被引量:322
  • 3李旭超,朱善安.图像分割中的马尔可夫随机场方法综述[J].中国图象图形学报,2007,12(5):789-798. 被引量:64
  • 4Li Y, Li J. Segmentation of SAR intensity imagery with a voronoi tessellation, bayesian inference, and reversible jump MCMC al- gorithm [ J ]. IEEE Transactions on C, eoseienee and Remote Sensing, 2010, 48(4) : 1872-1881.
  • 5Kato Z. Sementation of color images via reversible jump MCMC sampling [ J ]. Journal Image and Vision Computing, 2006, 26(3) : 361-371.
  • 6Corder G W, Foreman D L. Nonparametric Statistics for Non- Statisticians: A Step-by-Step Approach [ M ]. Hoboken: John Wiley & Sons, 2009 : 26-28.
  • 7Geman D, Geman S, Graffigne C. Boundary detection by con- strained optimization [ J]. IEEE Transactions on Pattern Analysis and Machine Intelligence, 1990, 12(7) : 609-628.
  • 8Lucarini V. Symmetry-break in voronoi tessellations [ J ]. Sym- metry, 2009, 1(1): 21-54.
  • 9Zhao Q H, Li Y, Liu Z G. SAR image segmentation using voronoi tessellation and bayesian inference applied to dark dpot feature extraction [J]. Sensors, 2013, 13(11) : 14484-14499.
  • 10Metropolis N, Rosenbluth A W, Rosenbluth M N. Equations of state calculations by fast computing machines [ J ]. Journal of Chemical Physics, 1953, 21(6) : 1087-1092.

引证文献5

二级引证文献24

相关作者

内容加载中请稍等...

相关机构

内容加载中请稍等...

相关主题

内容加载中请稍等...

浏览历史

内容加载中请稍等...
;
使用帮助 返回顶部