期刊文献+

背面喷涂高辐射涂层的发动机防热材料电弧加热试验模拟方法

Arc-Heating Test Simulation Method of Engine Thermal Protection Materials With High-Emissivity Rear Coating
下载PDF
导出
摘要 采用等离子电弧加热器双模型矩形湍流导管试验技术模拟了发动机内流热环境,对背面喷涂了高辐射涂层的发动机防热材料进行了热防护性能考核.利用改进的试验件安装方法,在防热材料的背面提供了开敞式的常温环境,使防热材料的高温背面能够对周围常温环境辐射散热,模拟了防热材料背面的换热环境.采用K型热电偶和单色红外测温仪测量了防热材料背面高辐射涂层的温度.根据以上两种不同测温方式测量的温度曲线,得到了该背面喷涂的高辐射涂层材料的光谱发射率随温度的变化曲线.试验结果表明:背面喷涂了高辐射涂层的材料背面温度比材料背面没有涂层的低了81.1 K;当温度在1 103~1 153K时,该高辐射涂层材料的光谱发射率ελ(λ=1.6 μm)为0.89 ~0.77,随温度升高,ελ呈下降趋势. The inner flow thermal environment of engine has been simulated by the arc-heater double-models rectangle turbulent duct technique in this paper. And the thermal protection performance of the thermal protection ma- terials with high-emissivity rear coating has been tested. The improved model installation method, which can provide open-type environment with normal temperature in the material rear, can make sure that the rear coating of material can radiated energy to the atmosphere or wall with normal temperature. And the heat transfer environment of the mate- rial rear has been simulation by this method. The type-K thermocouples and single-wavelength infrared thermometer were used to measure the high-emissivity rear coating temperature. According to the rear temperatures measured by the two kinds of instruments, the spectral emissivity vs. temperature curve can be found. The results show that the rear temperature of thermal protection materials with high-emissivity rear coating is 81.1 K lower than that without high-emissivity rear coating. The spectral emissivity of high-emissivity rear coating ελ(A = 1.6 p.m) is 0.89 to 0.77 for the temperature range from 1 103 to 1 153 K, and sx decreases when the temperature increases.
出处 《宇航材料工艺》 CAS CSCD 北大核心 2013年第5期65-69,共5页 Aerospace Materials & Technology
关键词 电弧加热器 内流热环境 发动机防热材料 背面高辐射涂层 光谱发射率 Arc heater, Inner flow thermal environment, Engine thermal protection materials, High-emissivityrear coating, Spectral emissivity
  • 相关文献

参考文献7

二级参考文献32

  • 1曹运红,盛德林,邢娅.超燃冲压发动机用复合材料技术的研究状况[J].飞航导弹,2005(6):54-58. 被引量:5
  • 2陈炳贻.航空发动机用热障涂层的发展[J].推进技术,1996,17(4):82-85. 被引量:8
  • 3Meitner P L. Analysis of Metal Temperature and Coolant Flow with a Thermal Barrier Coating on a Full-coverage-film-cooled Turbine Vane[R]. NASA-TP-1310, 1978.
  • 4Peters M,Schulz U,Saruhan-Brings B,et al. Advanced Thermal Barrier Coatings for Future Aero Engines[R]. ISABE 2005-1081,2005.
  • 5Nevin K H, Carrol F C. Feasibility of standard evalution procedures for ablation materials. NASACR--379, 1996:49 -68.
  • 6Winovich W. , On the equilibrium sonic-flow method for evaluating electric-arc air-heater performance, NASA TN D - 2132, 1964.
  • 7Adams M C, Powers W E, Georgiev S. An experimental and theoretical study of quartz ablation at the stagnation point. J. A.S. Journal, 1960:535 -543.
  • 8Robert Siegel, John R. Howell. Thermal radiation heat transfer. Taylor & Francis, New York London, fourth edition, 2002:213 -217.
  • 9杨世铭 陶文铨.传热学[M].北京:高等教育出版社,1992..
  • 10陈连忠.红外窗口内冷方案研究[D].北京:航天空气动力技术研究院,1998,21-22.

共引文献30

相关作者

内容加载中请稍等...

相关机构

内容加载中请稍等...

相关主题

内容加载中请稍等...

浏览历史

内容加载中请稍等...
;
使用帮助 返回顶部