期刊文献+

矩形箱梁约束扭转分析的精细积分法 被引量:2

Precise integration method of restrained torsion analysis of rectangular box shaped beam
下载PDF
导出
摘要 在薄壁杆件结构约束扭转的一致性理论前提下,以断面的扭角φ(z),翘曲θ(z)为基本未知函数,引入相应的对偶变量,建立了矩形箱梁约束扭转问题的哈密顿对偶求解体系,导出了问题的控制方程(哈密顿正则方程)。方程中的系统矩阵具有辛矩阵的特性,能方便地通过精细积分法求出高精度数值解。该方法是哈密顿力学在薄壁杆件结构约束扭转分析中的应用,数学推导简单,且有成熟高效的数值算法,思路清晰、精度高、易于接受,对问题的求解提供了新的思路。 Under the premise of the consistency theory of the thin-walled bar's restrained torsion, the torsional angle φ (z) and warp θ (z) of the section are taken as the primary unknown functions. By introducing dual variables,Hamihonian dual system for the analysis of restrained torsion of rectangular box shaped beam is constituted, then control equations ( Hamihonian canonical equations) of the problem are derived. The system matrix in the equations has characteristics of the symplectic matrix,then numerical solutions with high accuracy are often obtained with the precise integration method. And it is the application of Hamiltonian mechanics in the restrained torsion analysis of thin-walled structure. It is hightly accurate and easy to accept with a simple and clear mathematic derivation as well as efficient numerical algorithms. It supplies a new way to solve problems.
出处 《四川建筑科学研究》 2013年第5期36-38,共3页 Sichuan Building Science
基金 河北省自然科学基金资助项目(E2011402057)
关键词 矩形箱梁 薄壁杆件 约束扭转 哈密顿对偶体系 精细积分法 rectangular box shaped beam thin-waUed bar restrained torsion problems Hamihonian dual system method of precise integration
  • 相关文献

参考文献6

二级参考文献21

共引文献56

同被引文献18

引证文献2

二级引证文献6

相关作者

内容加载中请稍等...

相关机构

内容加载中请稍等...

相关主题

内容加载中请稍等...

浏览历史

内容加载中请稍等...
;
使用帮助 返回顶部