期刊文献+

基于BP神经网络的冷藏车温度预测研究 被引量:2

Study on Prediction of Temperature of Refrigerated Trucks Based on BP Neural Network
下载PDF
导出
摘要 随着人们生活水平的提高,食品和医药安全逐渐成为社会关注的焦点。温度监控是保证物流运输中物品安全、减少经济损耗的关键。尤其是乳制品、血浆、疫苗等温度敏感性物品对运输环境中的温度要求更严格。当前冷藏车温度监控在智能控制方面缺乏较好的方法,无法达到对于温度敏感性物品的有效监测。通过BP神经网络对物品的温度变化进行预测可以达到很好的监控效果。针对BP神经网络中存在的收敛速度慢的问题,文中提出了一种自适应的学习速率的新方法,并将其应用于冷藏车温度预测中,通过Matlab仿真表明该算法具有很好的预测效果。 With the improvement of people's living standards,the safety of food and medicine is becoming the focus of attention. Temper-ature monitoring is the key factor to ensure the material safety and reduction of economic losses in the logistics transportation. Especially for dairy products,plasma,vaccines and other temperature-sensitive items,more stringent is required. Currently,the refrigerated trucks that lack of a better way in intelligent control can not be achieved for the effective temperature monitoring. Using BP neural network to predict the change in temperature of the items can achieve good control effect. In this paper,a novel method of BP learning algorithm to improve the convergence rate in BP neural network is proposed. The method is used to predict the cold chain temperature. Matlab simula-tion shows that the algorithm has a fast convergence rate theoretically.
作者 张载龙 茹亮
出处 《计算机技术与发展》 2013年第10期180-183,共4页 Computer Technology and Development
基金 江苏省科技成果转化专项资金项目(BA2012024) 南京邮电大学项目(NY210012 NY211107)
关键词 神经网络 学习率 温度 neural network learning rate temperature
  • 相关文献

参考文献10

二级参考文献33

  • 1杨海东,周洺.基于RFID的农产品安全监控系统研究[J].微计算机信息,2008,24(5):190-192. 被引量:14
  • 2刘宏伟.食品行业的冷链物流[J].中国物流与采购,2004(17):46-47. 被引量:35
  • 3于立娟,于海业,张志平.基于GSM的远程环境监控系统[J].仪表技术与传感器,2007(3):69-70. 被引量:6
  • 4李庆扬 王能超.数值分析[M].武汉:华中理工大学出版社,1982..
  • 5NIED A, SELEME JR S I, PARMA G G, et al. On-line neural training algorithm with sliding mode control and adaptive learning rate [ J ]. Neurocomputing, 2007, 70 : 2687- 2691.
  • 6SHAHJAHAN M, MURASE K. Neural network training algorithm with positive correlation[J]. IEICE Trans Inf & Syst, 2005, E88-D(10):2399-2409.
  • 7LOONEY C G. Stabilization and speedup of convergence in training feedforward neural networks[J]. Neurocomputing, 1996, 10(1):7-31.
  • 8YU Xiao-hu, CHEN Guo-an. Efficient backpropagation learning using optimal learning rate and momentum[J]. Neural Networks, 1997, 10(3):517-527.
  • 9BHAYA A, KASZKUREWICZ E. Steepest descent with momentum for quadratic functions is a version of the conjugate gradient method [J]. Neural Networks, 2004, 17(1): 65-71.
  • 10XIONG Yan, WU Wei, ZHANG Chao, et al. Training Pi-Sigma network by online gradient algorithm with penalty for small weight update [ J ]. Neural Computation, 2007, 19 (12) :3356-3368.

共引文献76

同被引文献14

引证文献2

二级引证文献6

相关作者

内容加载中请稍等...

相关机构

内容加载中请稍等...

相关主题

内容加载中请稍等...

浏览历史

内容加载中请稍等...
;
使用帮助 返回顶部