期刊文献+

改进的小波变换子空间匹配追踪图像重构 被引量:1

Image Reconstruction Based on Improved Wavelet Transform Subspace Match Pursuit Algorithm
下载PDF
导出
摘要 为提升压缩感知信号重构效果,提出一种改进的小波变换子空间匹配追踪图像重构。根据图像信号小波变换后各子带系数的不同特性,保留小波变换低频子带系数,滤除、筛选高频子带系数,从而更有效地提取小波变换后图像的显著信息。然后基于压缩感知理论对处理后的高频子带系数进行随机观测,并结合子空间匹配追踪算法完成恢复计算,最后与低频子带系数结合实现图像的重构。仿真实验验证了该算法可以有效地提高图像信号的重构效果。 In order to improve the quality of signal reconstruction based on Compressed Sensing (CS) theory,this paper proposes an image reconstruction approach using Match Pursuit method on wavelet sub-space. According to the different characteristics of four wavelet sub-bands, the method proposed preserves the low-pass sub-band coefficients and filters high-pass coefficients to extract salient information more efficiently. Based on the CS theory,the filtered high-pass wavelet coefficients are measured with a Gaussian distributed matrix and then reconstructed by the Subspace Match Pursuit method. The reconstructed high-pass coefficients are then combined with the preserved low-pass coefficients to obtain the reconstructed image. The simulation results show that the quality of reconstructed image is significantly improved by this method.
出处 《火力与指挥控制》 CSCD 北大核心 2013年第10期34-37,共4页 Fire Control & Command Control
基金 国家自然科学基金(61071170) 教育部新世纪优秀人才支持计划资助项目
关键词 压缩感知 高频子带 匹配追踪 信号重构 compressed sensing, high-pass sub-band, match pursuit, signal reconstruction
  • 相关文献

参考文献3

二级参考文献22

  • 1Shannon C E. Communication in the Presence of Noise[J]. Proc. IRE, 1949,37 : 10-21.
  • 2Unser M. Sampling-50 Years After Shannon [J]. Proceeding of the IEEE, 2000,88(4) : 569-587.
  • 3Cands E. Compressive Sampling[C]//Proceedings of the International Congress of Mathematicians. adrid ,Spain, 2006,3:1433-1452.
  • 4Cands E, Romberg J, Terence T. Robust Uncertainty Principles : Exact Signal Reconstruction from Highly Incomplete Frequency Information [J]. IEEE Trans. on Information Theory, 2006,52 (2) : 489-509.
  • 5Cands E, Romberg J. Quantitative Robust Uncertainty Principles and Optimally Sparse Decompositions [J]. Foundations of Comput Math, 2006,6(2) : 227-254.
  • 6Donoho D L. Compressed Sensing[J]. IEEE Trans. on Information Theory, 2006,52 (4) : 1289-1306.
  • 7Cands E J, Romberg J. Practical Signal Recovery from Random Projections [ C ]//Proc. SPIE Computational Imaging, 2005,5674 : 76-86.
  • 8Donoho D L,Tsaig Y. Extensions of Compressed Sensing [J]. Signal Processing, 2006, 86 (3) : 533- 548.
  • 9GILBERT A C,STRAUSS M J,TROPP J A,et al.Algorithmic lineardimension reduction in the l1 norm for sparse vectors. Proceedingof the 44th Annual Allerton Conference on Communication,Controland Computing . 2006
  • 10CANDES E.Compressive sampling. Proceedings of the Interna-tional Congress of Mathmaticians . 2006

共引文献67

同被引文献4

引证文献1

相关作者

内容加载中请稍等...

相关机构

内容加载中请稍等...

相关主题

内容加载中请稍等...

浏览历史

内容加载中请稍等...
;
使用帮助 返回顶部