期刊文献+

具有脉冲接种和分布时滞的SVEIR传染病模型 被引量:5

SVEIR epidemic model with pulse vaccination and distributed time delay
下载PDF
导出
摘要 研究具有脉冲预防接种和分布时滞的SVEIR传染病模型的动力学行为,利用脉冲微分方程比较原理等得到无病周期解的全局吸引性和疾病持久的充分条件.结果表明,选择适当的脉冲接种周期、较大的脉冲接种率或者较大的脉冲接种后获得免疫率将会导致传染病的灭绝. The dynamics behaviors of an SVEIR epidemic model with pulse vaccination and distributed time delay were investigated. According to the comparison principle of impulsive differential equations, the sufficient conditions for global attractivity of infection-free periodic solution and permanence of the model were obtained. The obtained results showed that the infective disease would be eradicated if suitable impulsive period, larger vaccination rate and larger rate of obtained immunity were chosen.
出处 《兰州理工大学学报》 CAS 北大核心 2013年第5期130-134,共5页 Journal of Lanzhou University of Technology
基金 甘肃省自然科学基金(1107RJZA164)
关键词 脉冲接种 分布时滞 全局吸引性 持久性 pulse vaccination distributed time delay global attractivity permanence
  • 相关文献

参考文献10

  • 1SHULGIN B,STONE L, AGUR Z. Pulse vaccination strategy in the SIR epidemic model [J]. Bulletin of Mathematical Biolo- gy, 1998,60 : 1123-1148.
  • 2JIANG Y, WEI H, SONG X. Global attractivity and perma- nence of a delayed SVEIR epidemic model with pulse vaccina- tion and saturation incidence [J]. Applied Mathematical and Computation, 2009,213 : 312-321.
  • 3MENG X Z,JIAO J J,CHEN L S. Two profitless delays for an SEIRS epidemic disease model with vertical transmission and pulse vaccination [J]. Chaos, Solitons and Fractals, 2009,40 : 2114-2125.
  • 4BERETTA E, HARA T, MA W, et al. Global asymptotic sta- bility of an SIR epidemic model with distributed time delay [J]. Nonlinear Analysis.-Theory, Methods and Applications, 2001,47(6) : 4107-4115.
  • 5刘开源,陈兰荪.一类具有垂直传染与脉冲免疫的SEIR传染病模型的全局分析[J].系统科学与数学,2010,30(3):323-333. 被引量:23
  • 6黄灿云,安小峰.一类具有多时滞和非线性发生率的脉冲接种SEIRS传染病模型[J].兰州理工大学学报,2011,37(1):121-125. 被引量:8
  • 7霍海峰,付强,孙小科,张小兵,向红.一类时滞周期捕食-食饵模型的持久性[J].兰州理工大学学报,2009,35(3):134-138. 被引量:7
  • 8GAO S J, TENG Z D, NIETO J J, et al. Analysis of an SIR epi- demic model with pulse vaccination and distributed time delay[J]. Journal of Biomedicine and Biotechnology, 2007,2007: 1- 10.
  • 9KUANG Y. Delay differential equation with application in pop- ulation dynamics [M]. New York: Academic Press, 1993: 67- 70.
  • 10BERETTA E, TAKEUCHI Y. Global stability of an SIR epi- demic model with time delays[J]. Journal of Mathematical Biology, 1995,33(3) : 250-260.

二级参考文献35

  • 1CUI J A,SONG X Y.Permanence of a predator-prey system with stage structure[J].Discret Contin Dyn Ser B,2004,4(3):547-554.
  • 2CUI J A,SUN Y.Permanence of predator-prey system with infinite delay[J].Electron J Differ Equat,2004,81:1-12.
  • 3CHEN F D.Permanence of periodic Holling type predator-prey system with stage Structure for prey[J].Appl Comput,2006,182:1849-1860.
  • 4ZHANG H,CHEN L S.Permanence and extinction of a periodic predator-prey delay system with functional response and stage structure for prey[J].Math Comput,2007,184:931-944.
  • 5ZHANG Z Q.Periodic solutions of a predator-prey system with stage-structures for predator and prey[J].J Math Anal Appl,2005,302(2):291-305.
  • 6CUSHING J M.Periodic time dependent predator-prey system[J].SIAM J Math,1977,32:82-95.
  • 7HUO H F,LI W T,NIETO J J.Periodic solutions of delayed predator-prey model with the Beddington-DeAngelis functional response[J].Chaos Solitons Fractals,2007,33(2):505-512.
  • 8CUI J,CHEN L,WANG W.The effect of dispersal on population growth with stage-Structure[J].Comput Math Appl,2002,39:91-102.
  • 9D'Onofrio Alberto. Stability properties of pulse vaccination strategy in SEIR epidemic model. Mathematical Biosciences, 2002, 179(1): 57-72.
  • 10Li Michael Y, Smith Hall, Wang Liancheng. Global dynamics of an SEIR epidemic model with vertical transmission. SIAM Journal on Applied Mathematics, 2001, 62(1): 58-69.

共引文献32

同被引文献22

  • 1李建全,马知恩.一类带有接种的流行病模型的全局稳定性[J].数学物理学报(A辑),2006,26(1):21-30. 被引量:19
  • 2ZHAO Zhong,CHEN Lansun,SONG Xinyu.Impulsive Vaccination of SEIR Epidemic Model with Time Delay and Nonlinear Incidence Rate[J].Mathematics and Computer in Simulation,2008,79(4):500-510.
  • 3GAO Shujing,TENG Zhidong,XIE Dehui.The Effects of Pulse Vaccination on SEIR Model with Two Time Delays[J].Applied Mathematics and Computation,2007,201(4):282-292.
  • 4JIAO Jun,CHEN Lansun,CAI SKaohong.An SEIRS Epidemic Model with Two Delays and Pulse Vaccination[J].Jrl.Syst.Sci.&Complexity,2007,20(21):217-225.
  • 5MUSHAYABASA S,BHUNU C P.Modeling the impact of early therapy for latent tuberculosis patients and its optimal control analysis[J].J Biol Phys,2013,39:723-747.
  • 6BOWONG S.Optimal control of the transmission dynamics of tuberculosis[J].Nonlinear Dyn,2010,61:729-748.
  • 7YANG X,CHEN L.Permanence and positive periodic solution for the single-species nonautonomous delay diffusive models[J].Computers & Mathematics with Applications,1996,32(4):109-116.
  • 8LASALLE J P.The stability of dynamical systems[J].SIAM,Philadelphia,1976,21(3):418-420.
  • 9LI J Q,YANG Y L,ZHOU Y C.Global stability of an epidemic model with latent stage and vaccination[J].Nonlinear Analysis:Real World Applications,2011,12:2163-2173.
  • 10付景超,井元伟,张中华,张嗣瀛.两类易感者具垂直传染和预防接种的SIRS传染病模型[J].系统科学与数学,2009,29(4):502-511. 被引量:8

引证文献5

二级引证文献16

相关作者

内容加载中请稍等...

相关机构

内容加载中请稍等...

相关主题

内容加载中请稍等...

浏览历史

内容加载中请稍等...
;
使用帮助 返回顶部