摘要
在已知的映射方程解的基础之上,利用自相似映射方法,通过选择合适的系统参数,给出具有分布系数的(2+1)维非线性薛定谔系统丰富的精确自相似解,得出系统的可积约束条件,并讨论自相似解的动力学行为。
Based on the known exact solutions to a self-similar mapping equation, with the aid of a direct self- similar mapping approach, abundant exact self-similar solutions to the (2 +1)-dimensional generalized nonlinear Schrodinger equation with distributed coefficients is derived by entrancing appropriate system parameters. The integrable constraint conditions for the (2+1)-dimensional generalized nonlinear Schr6dinger system is obtained naturally. Meanwhile, the dynamic behaviors of the self-similar solutions are discussed.
出处
《丽水学院学报》
2013年第5期22-26,共5页
Journal of Lishui University
基金
浙江省自然科学基金资助项目(Y6110140)
浙江省教育厅科研项目(Y201120994)
关键词
(2+1)维非线性薛定谔系统
自相似映射
自相似解
动力学行为
the ( 2+1 ) -dimensional generalized nonlinear Schrodinger equation
self-similarity mapping
self-similar solution
dynamics behavior