期刊文献+

具有分布系数的(2+1)维非线性薛定谔方程的精确自相似解

The Exact Self-Similar Solutions to the(2+1)-Dimensional Generalized Nonlinear Schrodinger Equation with Distributed Coefficients
下载PDF
导出
摘要 在已知的映射方程解的基础之上,利用自相似映射方法,通过选择合适的系统参数,给出具有分布系数的(2+1)维非线性薛定谔系统丰富的精确自相似解,得出系统的可积约束条件,并讨论自相似解的动力学行为。 Based on the known exact solutions to a self-similar mapping equation, with the aid of a direct self- similar mapping approach, abundant exact self-similar solutions to the (2 +1)-dimensional generalized nonlinear Schrodinger equation with distributed coefficients is derived by entrancing appropriate system parameters. The integrable constraint conditions for the (2+1)-dimensional generalized nonlinear Schr6dinger system is obtained naturally. Meanwhile, the dynamic behaviors of the self-similar solutions are discussed.
作者 费金喜
机构地区 丽水学院理学院
出处 《丽水学院学报》 2013年第5期22-26,共5页 Journal of Lishui University
基金 浙江省自然科学基金资助项目(Y6110140) 浙江省教育厅科研项目(Y201120994)
关键词 (2+1)维非线性薛定谔系统 自相似映射 自相似解 动力学行为 the ( 2+1 ) -dimensional generalized nonlinear Schrodinger equation self-similarity mapping self-similar solution dynamics behavior
  • 相关文献

参考文献1

二级参考文献29

  • 1C.D. Angelis, IEEE J. Quant. Electron 30 (1994) 818.
  • 2C. Chin, T. Kraemer, and M. Mark, Phys. Rev. Lett. 94 (2005) 123201.
  • 3F.K. Abdullaev, A. Gammal, L. Tomio, and T. Frederico, Phys. Rev. A 63 (2001) 043604.
  • 4W. Zhang, E.M. Wright, H. Pu, and P. Meystre, Phys. Rev. A 68 (2003) 023605.
  • 5S. Inouye, et al., Nature (London) 392 (1998) 151.
  • 6C. Sulem and P.L. Sulem, The Nonlinear Schr-inger Equation, Springer, New York (1999).
  • 7G.I. Barenblatt, Scaling, Self-Similarity, and Intermediate Asymptotics, Cambridge University Press, Cambridge, England (1996).
  • 8C.R. Menyuk, D. Levi, and P. Winternitz, Phys. Rev. Lett. 69 (1992) 3048.
  • 9T.M. Monro, D. Moss, M. Bazylenko, C. Martin de Sterke, and L. Poladian, Phys. Rev. Lett. 80 (1998) 4072.
  • 10T.M. Monro, P.D. Millar, L. Poladian, and C.M. de Sterke, Opt. Lett. 23 (1998) 268.

相关作者

内容加载中请稍等...

相关机构

内容加载中请稍等...

相关主题

内容加载中请稍等...

浏览历史

内容加载中请稍等...
;
使用帮助 返回顶部