期刊文献+

反应堆补水系统诊断贝叶斯网络的建立和应用 被引量:2

Constitution and Application of Reactor Make-up System's Fault Diagnostic Bayesian Networks
下载PDF
导出
摘要 建立了补水系统贝叶斯故障诊断网络。在结合补水系统结构特点、运行规程和专家经验的基础上构建了初始诊断贝叶斯网络,运用基于微粒群优化的贝叶斯网络学习算法学习故障数据集,进一步构建完整网络,并进行推理分析。所建网络能有效分析和更新系统中各节点故障概率,为故障诊断提供辅助决策。 A fault diagnostic Bayesian network of reactor make-up system was constitu-ted .The system’s structure characters ,operation rules and experts’ experience were combined and an initial net was built .As the fault date sets were learned with the parti-cle swarm optimization based Bayesian network structure ,the structure of diagnostic net was completed and used to inference case .The built net can analyze diagnostic prob-ability of every node in the net and afford assistant decision to fault diagnosis .
出处 《原子能科学技术》 EI CAS CSCD 北大核心 2013年第10期1840-1844,共5页 Atomic Energy Science and Technology
关键词 补水系统 故障诊断 贝叶斯网络 微粒群优化 不确定性 make-up system fault diagnosis Bayesian network particle swarm optimization non-determinism
  • 相关文献

参考文献5

  • 1PELIKAN M, GOLDBERG D E. Linkage prob- lem, distribution estimation and Bayesian net works[J]. Evolutionary Computation, 2000, 8 (3) : 311-340(in Chinese).
  • 2KENNEDY J, EBERHART R. Particle swam optimization[C].// Proceedings of IEEE Interna tional Conference on Neural Networks. Perth: WA, 1995:1 942-1 948.
  • 3EBERHART R, KENNEDY J. A new optimizer using particle swarm theory[C] // Proceedings of the 6th International Symposium. Nagoya Micro- Machine and Human Science, 1995.. 39 43.
  • 4赵新文,蔡琦.舰艇核动力一回路装置[M].武汉:海军工程大学,2001.
  • 5杨自春,陈国兵.基于贝叶斯网络的船舶动力装置战场损伤分析[J].海军工程大学学报,2009,21(6):11-14. 被引量:5

二级参考文献7

共引文献4

同被引文献18

  • 1Chickering D M,Geiger D, Heckerman D. Learning Bayesian Network is NP-Hard[R]. Microsoft, 1994.
  • 2Zhang H, Liang Liang-xiao, Su J iang. Hidden Naive Bayes[C]// Proceedings of Canadian Artificial Intelligence Conference. 2005 : 432-441.
  • 3Bielza C, Larranaga P. Discrete Bayesian Network Classifiers: A Survey[J]. ACM Computing Surveys,2014,47(1).
  • 4Friedman N,Gierger D, Goldszmidt M. Bayesian Network Clas- sifters [J]. Machine Learning, 1997,29: 131-163.
  • 5van der Gaag L C, de Waal P R. Multi-dimensional Bayesian Network Classifiers [C] ffProceedings of 3 European Work- shop on Probabilistic Graphical Models (PGM). 2006.
  • 6de Waal P R,van der Gaag L C. Inference and learning in multi- dimensional Bayesian network classifiers [C] // Proceedings of 9th European Conference on Symbolic and Quantitative Approa- ches to Reasoning with Uncertainty (F_CSQARU). 2007:501-511.
  • 7Zaragoza J C,Sucar E,Morales E. A Two-step Method to Learn Multi-dimensional Bayesian Network Classifiers based on Mutual Information Measures [C] // Proceedings of 24th International FLAIRS Conference. 2011.
  • 8Borchani H, Bielza C, Martinez-Martin P, et al. Markov blanket- based approach for learning multi-dimensional Bayesian network classifiers: An application to predict the European Quality of Life-5 Dimensions (EQ-5D) from the 39-item Parkinson's Di- sease Questionnaire (PDQ-39) [J]. Journal of Biomedical Infor- matics, 2012,45 (6): 1175-1184.
  • 9Zaragoza J C, Sucar E, Morales E, et al. Bayesian chain classifi- ers for multidimensional classification [C]//Proceedings of 22"a International Joint Conference on Artificial Intelligence(IJ- CAD. 2011 : 2092-2097.
  • 10Zhang Min-ling, Zhou Zhi-hua. A Lazy Learning Approach to Multi-label Learning [J]. Pattern Recognition, 2007, 40 ( 7 ) : 2038-2048.

引证文献2

二级引证文献2

相关作者

内容加载中请稍等...

相关机构

内容加载中请稍等...

相关主题

内容加载中请稍等...

浏览历史

内容加载中请稍等...
;
使用帮助 返回顶部