期刊文献+

基于WPA和LS-SVM的风力发电机故障诊断方法研究

Research on Fault Diagnosis Method of Wind Turbine based on WPA and LS-SVM
原文传递
导出
摘要 针对风电机组低速齿轮箱故障的故障特点,提出了一种应用小波包分析(WPA)和最小二乘支持向量机(LS-SVM)相结合的故障诊断方法。将低速齿轮箱不同故障状态下的振动信号经小波包分解后获得各频带能量,经过归一化处理后作为特征向量构成训练样本和测试样本。通过训练样本训练LS-SVM故障诊断模型,用测试样本检验LS-SVM故障诊断模型的正确率。实验结果表明,WPA和LS-SVM相结合的故障诊断方法具有良好的诊断效果。 A method for the fault characteristics of low- speed gearbox fault diagnosis of wind turbine is pro- posed by means of the wavelet packet analysis (WPA) and least square - support vector machine (LS - SVM). The energy of frequency bands generated by wavelet packet decomposition of the low - speed gearbox vibration signals in different fault states is normalized as eigenvectors, thus forming training and testing samples of LS - SVM fault classifi- er. The LS- SVM fault diagnosis model is trained through the training samples and the accuracy is tested with the test- ing sample. The result shows that, the fault diagnosis method based on the WPA and KS- SVM has good diagnostics effect.
出处 《机械传动》 CSCD 北大核心 2013年第10期129-133,共5页 Journal of Mechanical Transmission
基金 中央高校基本科研业务费专项资金(13MS102)
关键词 小波包 最小二乘支持向量机 低速齿轮箱 故障诊断 Wavelet packet Least square- support vector machine Low- speed gearbox Fault diagnosis
  • 相关文献

参考文献17

二级参考文献150

共引文献573

相关作者

内容加载中请稍等...

相关机构

内容加载中请稍等...

相关主题

内容加载中请稍等...

浏览历史

内容加载中请稍等...
;
使用帮助 返回顶部