期刊文献+

基于粗糙集与神经网络的齿轮箱故障诊断 被引量:3

Fault Diagnosis of Gearbox based on Rough Set and Neural Network
原文传递
导出
摘要 对粗糙集的属性离散化和约简算法进行了研究,提出了一种基于粗糙集与神经网络相融合的故障诊断方法。首先提出一种优化NS断点集的方法用于离散化决策表,然后采用差别矩阵和差别函数直接求取最小属性约简集,最后采用神经网络对JZQ-250齿轮箱进行故障诊断,并比较了约简前后特征集的诊断结果,实验表明粗糙神经网络能够简化网络结构,有较强的容错和抗干扰能力,且迭代次数少,收敛速度快,诊断精度高,是一种有效的齿轮箱故障诊断方法。 A method of combining the rough sets and neural network based on the condition attributes discretiza- tion and reduction algorithm is proposed to fault diagnosis. Firstly the method for optimizing Naive Scaler breakpoint set is presented to discrete the decision table, and then the discernibility matrix and function are used to get the mini- mum attribute reduction set. Finally, the neural network is applied to fault diagnosis on JZQ - 250 gearbox, and com- paring the diagnosis results of the characteristic set before reduction with that after reduction, the experiments show that the rough - neural network can reduce the network structure, and has the powerful fault tolerance and anti - jam- ming capability with the feature of less iteration, faster convergence rate, higher diagnostic accuracy, which is an ef- fective method for the gearbox fault diagnosis.
出处 《机械传动》 CSCD 北大核心 2013年第10期134-139,共6页 Journal of Mechanical Transmission
基金 国家自然科学基金项目(51175480)
关键词 故障诊断 齿轮箱 粗糙集 神经网络 Fault diagnosis Gearbox Rough set Neural network
  • 相关文献

参考文献9

二级参考文献44

  • 1蔡念,胡匡祜,李淑宇,苏万芳.小波神经网络及其应用[J].中国体视学与图像分析,2001,6(4):239-245. 被引量:31
  • 2余红英,闫宏伟,潘宏侠.齿轮振动信号分解及其在故障诊断中的应用[J].振动.测试与诊断,2005,25(2):109-113. 被引量:15
  • 3张邦礼,李银国,曹长修.小波神经网络的构造及其算法的鲁棒性分析[J].重庆大学学报(自然科学版),1995,18(6):88-95. 被引量:21
  • 4Ziarko W. Variable precision rough set model [J]. Journal of Computer and System Science, 1993, 46 (1) : 39-59.
  • 5Pawalk Z. Rough set[J]. Inetnrational Journal of Compuetr and Information Sciences, 1982, 11 (5): 341-356.
  • 6Ajiun A, Nnig S, Chrisitne C, et al. Dsicovering ru- els for water demand perdcition: an enhanced rough- set apporach [J]. Engineeirng Applications of Artifi- cail Inetllgience, 1996, 9 (6): 645-653.
  • 713eynon M. Reducts wtihin the vairable percision rough sets model: a further investigation[J]. Euro- pean Journal of Opeartional Research, 2001, 124: 592-605.
  • 8Shen Lixiang, Francis E H T, Qu Liangsheng, et al. Fault diagnosis using rough sets theory[J]. Computers in Industry, 2000,43:61-72.
  • 9Knowledge Systems Group. Rosseta Technical Reference Manual[C]. 1999.
  • 10Nguyen H S. Discretization problem for rough sets methods[A ]. Proc of the lth hat Conf on Rough Sets and Current Trends in Computing ( RSCTC' 98 ) [ C ]. Warsaw, Poland,1998,545 - 552.

共引文献23

同被引文献33

引证文献3

二级引证文献5

相关作者

内容加载中请稍等...

相关机构

内容加载中请稍等...

相关主题

内容加载中请稍等...

浏览历史

内容加载中请稍等...
;
使用帮助 返回顶部