期刊文献+

基于MAR与FCM聚类的声呐图像分割 被引量:17

Sonar image segmentation based on MAR and FCM clustering
下载PDF
导出
摘要 针对模糊C均值聚类算法中,聚类效果往往受到聚类中心数目和初始聚类中心的影响这一问题,提出一种基于多尺度自回归(MAR)模型与模糊C均值(FCM)聚类的声呐图像分割方法。引入MAR模型,建立层与层之间以及相邻层像素点间的数学关系,利用粗尺度图像的灰度-邻域均值二维直方图中的峰值个数来确定聚类中心数目,通过MAR得到的预测分割结果引导初始聚类中心的确定。实验结果表明,改进后的算法能准确、快速地确定聚类中心数目,并较好地解决初始聚类中心问题;与传统的FCM聚类方法相比,具有分割准确和收敛速度快的特点。 Aiming at the problem that the performance of fuzzy C-means (FCM) clustering algorithm depends on the selection of the number of cluster centers and initial cluster centers, this paper proposes a sonar image segmentation algorithm,which combines the multiscale auto regressive (MAR) model with the fuzzy FCM clustering algorithm. MAR model is used to establish the mathematic relationships among different layers of the image and the pixels of the adjacent layers. The number of cluster centers is determined by the peak number of the coarse scale image two-di- mensional histogram, which represents the relationship of the gray value of a pixel vs. the average gray value of the pixels within its neighborhood. The forecasted segmenting result of the initial image with the MAR model determines the initial cluster centers. Experimental results on a sonar image show that the proposed algorithm can accurately and quickly determine the cluster center number and appropriately solve the initial cluster center problem. Compared with traditional FCM clustering method, the algorithm features more accurate segmentation and faster convergence speed.
出处 《仪器仪表学报》 EI CAS CSCD 北大核心 2013年第10期2322-2327,共6页 Chinese Journal of Scientific Instrument
基金 国家自然科学基金(41076060) 吉林省自然科学基金(20130101056JC)资助项目
关键词 多尺度自回归 模糊C均值聚类 声呐图像 二维直方图 muhiscale auto regressive (MAR) fuzzy C-means clustering sonar image two-dimensional histogram
  • 相关文献

参考文献18

  • 1张虎重,康志伟.融合模糊聚类的变分水平集图像分割模型[J].电子测量与仪器学报,2011,25(4):325-330. 被引量:13
  • 2THAMARAICHELVI B, YAMUNA G, VANITHA U. An improved method of image segmentation using fuzzy C- means[ C]. 2012 IEEE International Conference on Ad- vances in Engineering, Science and Management, 2012: 669 -672.
  • 3李宣平,王雪.模糊聚类协作区域主动轮廓模型医学图像分割[J].仪器仪表学报,2013,34(4):860-865. 被引量:19
  • 4匡平,朱清新,陈旭东.基于FCM的快速模糊聚类算法研究[J].电子测量与仪器学报,2007,21(2):15-20. 被引量:9
  • 5KANNAN S R, RAMATHILAGAM S, DEVI R, et al. Strong fuzzy c-means in medical image data analysis[ J]. Journal of Systems and Software, 2012, 85 ( 11 ) : 2425 -2438.
  • 6NAIK A, SATAPATHY S C, PARVATHI K. Improvement of initial cluster center of c-means using teaching learning based optimization [ C ]. Procedia Technology, 2012,6: 428-435.
  • 7BENAICHOUCHE A N, OULHADJ H, SIARRY P. Im- proved spatial fuzzy C-means clustering for image seg- mentation using PSO initialization, Mahalanobis distance and post-segmentation correction [ J ]. Digital Signal Pro- cessing,2013,23 (5) : 1390-1400.
  • 8SHIEH H L, CHANG P L. A new robust validity index for fuzzy clustering algorithm [ C ]. 2010 IEEE International Conference on Industrial Engineering and Engineering Management, 2010 : 767-771.
  • 9赵春晖,齐滨.基于模糊核加权C-均值聚类的高光谱图像分类[J].仪器仪表学报,2012,33(9):2016-2021. 被引量:19
  • 10叶秀芬,王兴梅,张哲会,方超.新的声纳图像自动分割方法[J].计算机工程与应用,2009,45(2):168-172. 被引量:3

二级参考文献104

共引文献82

同被引文献247

引证文献17

二级引证文献288

相关作者

内容加载中请稍等...

相关机构

内容加载中请稍等...

相关主题

内容加载中请稍等...

浏览历史

内容加载中请稍等...
;
使用帮助 返回顶部