期刊文献+

协同过滤中一种有效的最近邻选择方法 被引量:15

Method of Neighborhood Formation in Collaborative Filtering
下载PDF
导出
摘要 协同过滤中的评分数据稀疏性使得最近邻搜寻不够准确,导致推荐质量较差.基于此,文中提出一种有效的针对稀疏评分的最近邻选择方法——两阶段最近邻选择算法(TPNS).TPNS分为两个步骤,首先计算用户间的近邻倾向性,选择近邻倾向性较高的用户组成初始近邻集合;然后根据初始近邻集合计算目标用户与其他用户间的等价关系相似性,使用等价关系相似性对目标用户的初始近邻集合进行修正,得到最近邻集合.在MovieLens数据集上对比常用的推荐算法,实验结果表明文中方法在协同过滤推荐的应用中具有更高的准确性. In collaborative filtering, sparsity in ratings resuhing in poor recommendations. To address this makes inaccurate neighborhood formation, thereby issue, a method of neighborhood formation, two-phase neighbor selection method (TPNS), is proposed. The definition of neighbor tendency is given. Based on the neighbor tendency, the preliminary neighborhood is formed. Then, the equivalence relation similarity is applied to modify the preliminary neighborhood, which makes the neighborhood formation more accurate. Experimental results on MovieLens dataset show that compared with the existing algorithms, TPNS performs better in the application of personalized recommendation.
出处 《模式识别与人工智能》 EI CSCD 北大核心 2013年第10期968-974,共7页 Pattern Recognition and Artificial Intelligence
基金 国家自然科学基金(No.71271072 71201145) 高等学校博士学科点专项科研基金(No.20110111110006) 教育部人文社会科学研究基金(No.09YJC630055 11YJC630283)资助项目
关键词 推荐系统 协同过滤 最近邻选择 近邻倾向性 近邻修正 Recommender System, Collaborative Filtering, Neighborhood Formation, Neighbor Tendency, Neighborhood Modification
  • 相关文献

参考文献24

  • 1吴湖,王永吉,王哲,王秀利,杜栓柱.两阶段联合聚类协同过滤算法[J].软件学报,2010,21(5):1042-1054. 被引量:83
  • 2Adomavicius G, Tuzhilin A. Toward the Next Generation of Recom?mender Systems: A Survey of the State-of-the-Art and Possible Extensions. IEEE Trans on Knowledge and Data Engineering, 2005,17(6): 734-749.
  • 3Leung C W K, Chan S, Chung F 1. A Collaborative Filtering Framework Based on Fuzzy Association Rules and Multiple-Level Similarity. Knowledge and Infonnation Systems, 2006, 10 (3 ): 357- 381.
  • 4Sarwar B, Karypis G, KonstanJ, et al. Item-Based Collaborative Filtering Recommendation Algorithms//Proc of the 10th Interna?tional Conference on World Wide Web. Hong Kong, China, 2001: 285-295.
  • 5Kim H N,Ji AT, Ha I, et al, Collaborative Filtering Based on Co?llaborative Tagging for Enhancing the Quality of Recommendation. Electronic Commerce Research and Applications, 2010, 9 ( 1 ) : 73- 83.
  • 6HerlockerJ, KonstanJ, Terveen L, et al, Evaluating Collaborative Filtering Recommender Systems. ACM? Trans on Information Sys?tems, 2004, 22(1): 5-53.
  • 7Ahn HJ. A New Similarity Measure for Collaborative Filtering to Alleviate the New User Cold-Starting Problem. Information Sci?ences, 2008, 178(1) : 37-51.
  • 8Lee S K, Cho Y H, Kim S H. Collaborative Filtering with Ordinal Scale-Based Implicit Ratings for Mobile Music Recommendations. Information Sciences, 2010, 180(11) : 2142-2155.
  • 9Sarwar B, Karypis G, KonstanJ, et al. Analysis of Recommenda?tion Algorithms for E-Commerce//Proc of the 2nd ACM Conference on Electronic Commerce. New York, USA, 2000: 158-167.
  • 10BobadillaJ, Hernando A, Ortega F, et al. Collaborative Filtering Based on Significances. Information Sciences, 2012, 185 (1) : 1-17.

二级参考文献70

共引文献951

同被引文献207

引证文献15

二级引证文献301

相关作者

内容加载中请稍等...

相关机构

内容加载中请稍等...

相关主题

内容加载中请稍等...

浏览历史

内容加载中请稍等...
;
使用帮助 返回顶部