期刊文献+

数据挖掘预测模型在脑伤患者认知功能康复中的应用与研究

Application of Data Mining Prediction Model in Cognitive Rehabilitation of Acquired Brain Injury Patients
下载PDF
导出
摘要 为了更好地预测后天性脑损伤(ABI)患者认知功能康复的影响因素,借助于10折交叉验证测试算法,通过专一性、灵敏度和精度分析以及混淆矩阵分析对模型的性能进行测试,从而获得新的知识以评估和改善认知功能康复过程中的有效性。实验利用决策树(DT)、多层感知器(MLP)和广义回归神经网络(GRNN)三种预测模型对250例ABI案例进行了测试,结果表明,基于DT的模型的模拟结果明显比其他模型更为优越,预测平均精度可高达90.38%。 To better predicting factors of acquired brain injury (ABI) patients’ cognitive rehabilitation, prediction models based on Decision tree (DT), multilayer perceptron (MLP) and general regression neural network (GRNN) is proposed.10-fold cross validation is carried out in order to test the algorithms .Specificity, sensitivity and accuracy analysis and confusion matrix anal-ysis are used to obtain new knowledge to evaluate and improve the effectiveness of the cognitive rehabilitation process .The experi-mental results show that results obtained by DT are clearly superior with a prediction average accuracy of 90 .38%.
作者 刘晓蔚
出处 《东莞理工学院学报》 2013年第5期51-58,共8页 Journal of Dongguan University of Technology
关键词 后天性脑损伤 认知功能康复 数据挖掘 决策树 多层感知器 广义回归神经网络 acquired brain injury cognitive rehabilitation data mining decision tree multilayer perceptron general regression neural network
  • 相关文献

参考文献16

  • 1Janez Demar, Bla Zupan. Orange: Data Mining Fruitful and Fun A Historical Perspective [ J ]. Informatica, 2013, 37 (3) : 55 -60.
  • 2Kurgan L, Cios K. Cairn discretization algorithm [ J]. 1EEE Trans Knowl Data Eng, 2004, 16(2) :145 - 153.
  • 3Luengo J, Saez J, Lopez V, et al. A survey of discretization techniques: taxonomy and empirical analysis in supervised learning [ J]. IEEE Trans Knowl Data Eng, 2012, 33(4) : 109 -122.
  • 4覃光华,李祚泳.BP网络过拟合问题研究及应用[J].武汉大学学报(工学版),2006,39(6):55-58. 被引量:24
  • 5Biba M, Esposito F, Feri|li S, et al. Unsupervised discretization using kernel density estimation [ J]. Inter - national joint conference on artifi- cial intelligence. 2012, 34(5) : 696 -701.
  • 6孟祥福,张霄雁,马宗民,彭晏飞.一种基于领域知识的XML数据模糊查询[J].智能系统学报,2012,7(6):525-535. 被引量:10
  • 7高阳.中国数据挖掘研究进展[J].南京大学学报(自然科学版),2011,47(4):351-353. 被引量:27
  • 8Luertgo J, Sacz J, Lopez V, et al. A survey of discretization techniques: taxonomy and empirical analysis in supervised learning [ J . IEEE Trans Know! Data Eng, 2012, 35(2) :132 -142.
  • 9李海军,王钲旋,王利民,苑森淼.一种基于贝叶斯测度的有监督离散化方法[J].仪器仪表学报,2005,26(8):786-789. 被引量:5
  • 10Botev Z, Grotowski J, Kroese D Kernel density estimationvia diffusion [ J]. Ann Stat,2010, 38 (5) :2916 -2957.

二级参考文献60

  • 1衡星辰,覃征,邵利平,曹玉辉,高洪江.基于两阶段查询重写的XML近似查询算法[J].电子学报,2007,35(7):1271-1278. 被引量:6
  • 2Quinlan J R.Induction on decision trees[J].Machine Learning, 1986,1:81-106.
  • 3Quinlan J R.C4.5: Programs for machine leaming[D].[S.1.]: Morgan Kaufrnann, 1993.
  • 4Steinberg D, Colla P L.CART: Tree-structured nonparametric data analysis[M].San Diego, CA : Salford System, 1995.
  • 5Holte R C.Very simple classification rules perform well on most commonly used datasets[J].Machine Learning, 1993,11:63-91.
  • 6Chiu D K Y, Cheung B, Wong A K C.Information synthesis based on hierarchical entropy dlscretization[J].Joumal of Experimental and Theoretical Artificial Intelligence, 1990,2: 117-129.
  • 7Kerber R.Chimerge: Discretization of numeric attributes[C]//Proceeding of the Tenth National Conference on Artificial Intelligence, 1992: 123-128.
  • 8Kononenko l.On biases in estimating multi-valued attributes[C]// t4th International Joint Conference on Articial Intelligence, 1995: 1034-1040.
  • 9Paterson A,Niblett T B.ACLS Manual.Edinburgh Intelligent Terminals[Z]. 1987.
  • 10http ://www.ics.uci.edu/_mlearn/MLRepository.html.

共引文献62

相关作者

内容加载中请稍等...

相关机构

内容加载中请稍等...

相关主题

内容加载中请稍等...

浏览历史

内容加载中请稍等...
;
使用帮助 返回顶部