摘要
移动手臂为刚性较差的悬臂梁,在路面不平度随机激励下产生较大振动,从而降低机器人系统可靠性和手臂抓持稳定性。针对上述问题,首先应用拉格朗日方法建立了移动平台垂向动力学模型,并针对于手臂质量分布不均的特点,采用集中质量单元和Euler-Bernoulli梁单元建立了有限元离散化垂向动力学模型;进而将以上两种模型通过结点约束条件联立建立了整个移动手臂的垂向动力学模型。基于此模型,利用高效的虚拟激励法和精细积分算法分析非平稳随机激励下的移动手臂动态响应的算法。得到了移动手臂在不平地面非平稳随机激励下的动态响应,为机器人悬架设计和移动手臂振动控制提供了快速分析方法。
The random excitation due to road roughness has some effects on a mobile manipulator. Its reliability and stability are reduced. Here, firstly the dynamic model in vertical direction of its mobile plat was built with Lagrange method, and the dynamic model of the manipulator was built with the finite element method ( FEM ). And then the two models were rebuilt into a whole model of the mobile manipulator with the constraint conditions at the connected nodes. Using the accurate and highly efficient pseudo-excitation method (PEM), the precise time-integration method (PIM) and the built dynamic model, the dynamic response power spectral density (PSD) of the mobile manipulator under non- stationary random excitation due to road roughness was obtained. This result provided a valuable reference for design of suspension of a mobile manipulator.
出处
《振动与冲击》
EI
CSCD
北大核心
2013年第20期72-75,共4页
Journal of Vibration and Shock
基金
国家高技术研究发展计划(863计划
2007AA041501)
哈工大科研创新基金(HIT.NSRIF.2010063)
国家自然科学基金青年基金(61105088)