期刊文献+

结合面切向接触刚度三维分形模型 被引量:7

Three-Dimensional Fractal Model of Tangential Contact Stiffness of Joint interfaces
下载PDF
导出
摘要 基于接触分形理论和微接触大小分布函数,建立了结合面切向接触刚度的三维分形模型,并通过对所建模型的仿真,揭示了结合面切向接触刚度与结合面诸参数之间的非线性关系。并将结合面切向接触刚度的二维模型和三维模型进行数字仿真比较。研究结果表明,随着法向载荷的增大,结合面切向接触刚度也增大;随着切向载荷和G的增大,结合面切向接触刚度则减小;随着D的变化规律比较复杂。对比结果表明,随着分形维数D和D s的增大,二维分形模型的结合面切向接触刚度越来越接近三维分形模型的结合面切向接触刚度。 Based on contact fractal theory and micro-contact size distribution function, a three-dimensional fractal model of tangential contact stiffness of joint surfaces was proposed. Furthermore, numerical simulation was carried out to obtain the complicated nonlinear relations between normal contact stiffness and the characteristic parameters of joint interfaces. Two-dimensional fractal model of tangential contact stiffness of joint interfaces and three-dimensional model of tangential contact stiffness of joint interfaces were compared. The results show the normal contact stiffness increased with the normal load, decreased with the tangential load, and, G but complicatedly with D. The tangential contact stiffness of joint interfaces of two-dimensional fractal model is close to the tangential contact stiffness of joint interfaces three-dimensional fractal model with the increasing D and Ds.
出处 《太原科技大学学报》 2013年第5期361-367,共7页 Journal of Taiyuan University of Science and Technology
基金 国家自然科学基金资助项目(51275328) 山西省自然科学基金资助项目(2012011023-4) 山西省回国留学人员科研资助项目(2011-076) 山西省研究生优秀创新项目(20123103)
关键词 结合面 切向接触刚度 分形理论 分形模型 joint interfaces, tangential contact stiffness ,fractal theory ,fractal model
  • 相关文献

参考文献9

  • 1GREENWOOD J A, WILLIAMSON J B P. Contact of nominally fiat surfaces [ J ]. Proceedings of the Royal Society of London, Se- ries A, Mathematical and physical sciences, 1996,295:300-319.
  • 2WHITEHOUSE D J, ARCHARD J F. The properties of random surface of significance in their contact [ J ]. Proceedings of RoyalSociety of London : A, 1970,316:97-121.
  • 3MAJUMDAR A. Bhushan B. Fractal model of elastic-plastic contact between rough surfaces [ J ]. ASME Journal of Tribology, 1991,113(1) :1-11.
  • 4YAN K, KOMVOPOULOS K. Contact analysis of elastic-plastic fractal surfaces [ J ]. Journal of Applied Physics, 1998,84 ( 7 ) : 3617-3624.
  • 5JOHNSON K L. Contact Mechanics [ M ]. UK: Cambridge University Press, 1985.
  • 6刘正伦.具可变形貌参数之微接触模型理论研究[D].中国台湾:国立成功大学,2006.
  • 7YOU J M, CHEN T N. Statistical model for normal and tangential contact parameters of rough surface [ J ]. J Mechanical Engi- neering Science,2010,225 : 171-185.
  • 8JIANG SHUYUN, ZHENG YUNJIAN. A contact stiffness model of machined joint surfaces [ J ]. ASME Journal of Tribology, 2000,132(1) :1-7.
  • 9田红亮,赵春华,朱大林,秦红玲,李响,毛宽民.金属材料结合部法切向刚度修正与实验验证[J].农业机械学报,2012,43(6):207-214. 被引量:18

二级参考文献16

  • 1刘正君.MATLAB科学计算与可视化仿真[M].北京:电子工业出版社,2009.
  • 2Yan W, Komvopoulos Kyriakos. Contact analysis of elastic-plastic fractal surfaces[ J]. Journal of Applied Physics, 1998, 84(7) :3 617 - 3 624.
  • 3Wang S, Komvopoulos Kyriakos. A fractal theory of the interfaeial temperature distribution in the slow sliding regime: part I -elastic contact and heat transfer analysis[J]. ASME Journal of Tribology, 1994,116(4) :812 - 823.
  • 4Jiang Shuyun, Zheng Yunjian, Zhu Hua. A contact stiffness model of machined plane joint based on fractal theory[J]. ASME Journal of Tribology, 2010,132 ( 1 ) :011401 - 1 - 011401 - 7.
  • 5Majumdar A, Tien C L. Fractal network model for contact conductance[ J]. ASME Journal of Heat Transfer, 1991 , 113 ( 3 ) : 516 -525.
  • 6Yang J, Komvopoulos Kyriakos. A mechanics approach to static friction of elastic-plastic fractal surfaces[ J]. ASME Journal of Tribology, 2005,127 ( 2 ) :315 - 324.
  • 7Tian Hongliang, Li Bin, Liu Hongqi, et al. A new method of virtual material hypothesis-based dynamic modeling on fixed joint interface in machine tools[ J ]. International Journal of Machine Tools & Manufacture, 2011,51 (3) :239 -249.
  • 8温淑花,张学良,文晓光,王鹏云,武美先.结合面切向接触刚度分形模型建立与仿真[J].农业机械学报,2009,40(12):223-227. 被引量:44
  • 9田红亮,朱大林,秦红玲.MB模型计算原理的修正[J].三峡大学学报(自然科学版),2011,33(3):68-73. 被引量:9
  • 10田红亮,朱大林,秦红玲,林卫共.结合部法向载荷解析解修正与定量实验验证[J].农业机械学报,2011,42(9):213-218. 被引量:14

共引文献20

同被引文献55

  • 1张学良,温淑花,兰国生,等.平面结合面切向接触阻尼分形模型及其仿真[J].西安交通大学报,2011,45(5):74-77,136.
  • 2刘正伦.具可变形貌参数之微接触模型理论研究[D].中国台湾:国立成功大学,2006.
  • 3MJUMDAR A,BHUSHAN B. Fractal Model of Elastic-plastic Contact between Rough Surfaces[ J l-J Tribol, 1991,113:1-11.
  • 4YAN W, KOMVOPOULOS K. Contact analysis of elastic-plastic fractal surfaces [ J ]. Journal of Applied Physics, 1998,84 : 3617- 3624.
  • 5KOGUT L, ETSION I. Elastic-plastic contact analysis of asphere and a rigid flat [ J ]. ASME Journal of Applied Mechanics, 2002,69 (5) :657-662.
  • 6LIN L P, LIN J F. An asperity microcontact model developed for the determination of elastoplastic deformation regime and con- tact behavior microasperity [ J ]. ASME J Tribol,2004 ,127 :666-672.
  • 7JOHNSON K L. Contact mechanics [ M ]. Cambridge: Cambridge university press, 1985.
  • 8BOGRAD S, SCHMIDT A, GAUL L. Joint damping prediction by thin layer elements [ C ]///Proceedings of IMAC 26, society of experimental mechanics Inc. Bethel, Connecticut, US,2008.
  • 9YOU J M,CHEN T N. Statistical model for normal and tangential contact parameters of rough surface[J]. J Mechanical Engi- neering Science,2010,225 : 171-185.
  • 10JIANG SHUYUN,ZHENG YUNJIAN. A contact stiffness model of machined joint surfaces [ J]. ASME Journal of Tribology, 2000,132(1) :1-7.

引证文献7

二级引证文献16

相关作者

内容加载中请稍等...

相关机构

内容加载中请稍等...

相关主题

内容加载中请稍等...

浏览历史

内容加载中请稍等...
;
使用帮助 返回顶部