摘要
基于接触分形理论和微接触大小分布函数,建立了结合面切向接触刚度的三维分形模型,并通过对所建模型的仿真,揭示了结合面切向接触刚度与结合面诸参数之间的非线性关系。并将结合面切向接触刚度的二维模型和三维模型进行数字仿真比较。研究结果表明,随着法向载荷的增大,结合面切向接触刚度也增大;随着切向载荷和G的增大,结合面切向接触刚度则减小;随着D的变化规律比较复杂。对比结果表明,随着分形维数D和D s的增大,二维分形模型的结合面切向接触刚度越来越接近三维分形模型的结合面切向接触刚度。
Based on contact fractal theory and micro-contact size distribution function, a three-dimensional fractal model of tangential contact stiffness of joint surfaces was proposed. Furthermore, numerical simulation was carried out to obtain the complicated nonlinear relations between normal contact stiffness and the characteristic parameters of joint interfaces. Two-dimensional fractal model of tangential contact stiffness of joint interfaces and three-dimensional model of tangential contact stiffness of joint interfaces were compared. The results show the normal contact stiffness increased with the normal load, decreased with the tangential load, and, G but complicatedly with D. The tangential contact stiffness of joint interfaces of two-dimensional fractal model is close to the tangential contact stiffness of joint interfaces three-dimensional fractal model with the increasing D and Ds.
出处
《太原科技大学学报》
2013年第5期361-367,共7页
Journal of Taiyuan University of Science and Technology
基金
国家自然科学基金资助项目(51275328)
山西省自然科学基金资助项目(2012011023-4)
山西省回国留学人员科研资助项目(2011-076)
山西省研究生优秀创新项目(20123103)
关键词
结合面
切向接触刚度
分形理论
分形模型
joint interfaces, tangential contact stiffness ,fractal theory ,fractal model