期刊文献+

基于灰色遗传算法的LM-BP的河流溶解氧预测 被引量:4

Predicting Dissolved Oxygen in River Based on Grey LM-BP Network of Random Genetic Algorithm
下载PDF
导出
摘要 溶解氧(DO)是影响河流生态系统健康非常重要的一项指标,以沦河孝感段实测DO为例,在灰色理论的基础上提出并建立遗传算法(GA)的LM-BP网络河流DO预测模型。对DO的原始数据采用灰色理论进行预测,对其残差采用GA的LM-BP网络进行拟合并测试,结果表明:基于GA的LM-BP网络基本上100%拟合,对最后3个数据进行测试,其误差不超过2.933%,说明可以用该灰色GA的LM-BP模型对本地区的DO进行预测。为河流水质分析提供了新的方法。 Dissolved oxygen (DO) is a very important indicator for river ecosystem health.Taking the DO test in the Xiaogan Reach of the Lunhe River as a case,DO prediction model based on grey LM-BP network of random Genetic Algorithm (GA) was put forward and established.The raw data of DO were predicted based on grey theory,and the residual data were fitted and tested in random GA-LM-BP network.As it turned out,the data rate of accordance is approximately 100% based on random GA-LM-BP network.Furthermore,the last three months data were tested and the errors were less than 2.933%.Thus,the grey LM-BP network of random GA could be used to predict DO in local area.Therefore,it can provide a new methodology for the analysis of water quality.
作者 崔雪梅
出处 《水文》 CSCD 北大核心 2013年第5期46-51,共6页 Journal of China Hydrology
基金 基于灰色理论的孝感市郊区农业用地土壤重金属污染评价及控制研究(Z2011019) 非环境科学类专业学生环境保护教育的研究与实践(2009B106 湖北省教育科学"十一五"规划2009年度课题)
关键词 灰色理论 GA-LM-BP网络 测试误差 水质预测 grey theory GA-LM-BP network test error water quality prediction
  • 相关文献

参考文献11

二级参考文献72

共引文献128

同被引文献51

  • 1张智韬,台翔,杨宁,张珺锐,黄小鱼,陈钦达.不同植被覆盖度下无人机多光谱遥感土壤含盐量反演[J].农业机械学报,2022,53(8):220-230. 被引量:11
  • 2孙龙清,吴雨寒,孙希蓓,张松.基于IBAS和LSTM网络的池塘水溶解氧含量预测[J].农业机械学报,2021,52(S01):252-260. 被引量:14
  • 3谢乃明,刘思峰.离散GM(1,1)模型与灰色预测模型建模机理[J].系统工程理论与实践,2005,25(1):93-99. 被引量:352
  • 4管秋,王万良,徐新黎,陈胜勇.基于神经网络的污水处理指标软测量研究[J].环境污染与防治,2006,28(2):156-158. 被引量:22
  • 5Liu S Y, Xu L Q, Li D L, et al. Prediction of dissolved oxygen content in river crab culture based on least squares support vector regression optimized by improved particle swarm optimization[ Jl ~ Computers and Electronics in Agriculture, 2013, 95 : 82 - 91.
  • 6Chen W B, Liu W C. Artificial neural network modeling of dissolved oxygen in reservoir [ J ]. Environmental Monitoring and Assessment, 2014, 186(2) : 1203 - 1217.
  • 7Antanasijevic D, Pocajt V, Povrenovic D, et al. Modeling of dissolved oxygen content using artificial neural networks: DanubeRiver, North Serbia, case study[ J]. Environmental Science and Pollution Research, 2013, 20(12) : 9006 -9013.
  • 8Hamaamin Y A, Nejadhashemi A P, Einheuser M D. Application of fuzzy logic techniques in estimating the regional index flow for Michigan[ J]. Transactions of the ASABE, 2013, 56 ( 1 ) : 103 - 115.
  • 9Freni G, Mannina G. Uncertainty estimation of a complex water quality model: the influence of Box-Cox transformation on Bayesian approaches and comparison with a non-Bayesian method[ J]. Physics and Chemistry of the Earth, 2012, 42 -44:31 -41.
  • 10Emamgholizadeh S, Kashi H, Marofpoor I, et al. Prediction of water quality parameters of Karoon River (Iran) by artificial intelligence-based models[ J]. International Journal of Environmental Science and Technology, 2014, 11 (3): 645 -656.

引证文献4

二级引证文献24

相关作者

内容加载中请稍等...

相关机构

内容加载中请稍等...

相关主题

内容加载中请稍等...

浏览历史

内容加载中请稍等...
;
使用帮助 返回顶部