期刊文献+

基于压缩小波的超宽带天线组网传递算法

Ultra-Wideband Antenna Network Transmission Algorithm Based on the Wavelet Compression
下载PDF
导出
摘要 超宽带通信技术中,对大数据的有效通信是一个难点问题,一旦数据过大,会造成信道阻塞,产生拥塞,造成超宽带天线通信效果降低。为了解决这一问题,提出一种基于压缩小波的超宽带天线组网传递算法。通过建立小波数据的有效压缩模型,把需要传递的数据分解为小波高频和低频系数,对高频区域进行压缩,保证天线通信效率。后期的Matlab软件仿真实验表明,算法在大数据的超宽带天线通信方法上取得了较好的效果。 Uwb communications, for large data of effective communication is a difficult problem, once the data is too big, can cause channel jam, produce congestion, cause uhra-wideband antenna communication effect become, in order to solve this problem, this paper puts forward a compression based on wavelet uhra-wideband antenna network transmission algorithm. Through the establishment of small wave data effective compression model, the need to transfer data is decomposed into wavelet coefficients of high frequency and low frequency to high frequency area of compression, guarantee the antenna communication efficiency. Later Matlab software simulation results show that the new algorithm in the big data ultra-wideband antenna communication method has achieved a good effect.
作者 刘珂 王海荣
出处 《科技通报》 北大核心 2013年第10期42-44,47,共4页 Bulletin of Science and Technology
关键词 超宽带 小波压缩 数据传递 uhra-wideband wavelet compression data transfer
  • 相关文献

参考文献5

  • 1Zhanga J, Zhanga X. Object representation and recogni-tion in shape spaces[J]. Pattern Recognition, 2003.
  • 2陈春燕.小波神经网络改进算法在故障诊断中的应用[J].科技通报,2012,28(10):31-33. 被引量:16
  • 3Gang Zhang, Z M Ma,Ying He, Tie-Nan Zhao. Texturecharacteristic extraction for dominant directions in con-tent-based medical image retrieval [J]. 1ST 2008 -IEEEWorkshop on Imaging Systems and Techniques Proceed-ings, 2008:73-76.
  • 4Groutange D,Bennink D. Feature sets for nonstationarysignals derived from moments of the singular value de-composition of Cohen2Posch(positive time2 frequency)dis-tributions [J]. Signal Processing IEEE Transactions on,2000,48(5):1498-1503.
  • 5Gong Jianya, Lu Jun, Ye Huanzhuo, Chen Xiaoling,YangJielong. Classification based on texture feature of wavelettransform [J]. The International Society for Optical Engi-neering^^, 5660 :208-217.

二级参考文献6

  • 1Zhenyuan Wang, Nien-chung Wang,Tzong-Yih Guo,Frank T.C.Huang,Yilu-Liu,Paul J Griffin.Artificial Intelligence in Power Equipment Fault Diagnosis [C]//.IEEE PES Winter Meeting.2000,1:128-133.
  • 2H Szu,T Brian.Neural Network Adaptive Wavelets for Signal Representation and Classification[J] .Optical Engi- neering, 1992,31(9):1907-1916.
  • 3H H Szu,Shubha Kadambe.Neural network adaptive wavelets for sianal representation an classification[J] .Op- tical Engineering, 1992,31 (9): 1907-1919.
  • 485-92DE JONG KA. An Analysis of the Behavior of a Class of Genetic Adaptive System [D]. Ph.D Dissertation, University of Michigan, 1975:76-9381.
  • 5CAVICCHIO DJ.Reproductive Adaptive Plans[A].Proceed- ings of the ACM [C]//.1972 Annual Conference.1972: 1- 11.
  • 6朱敏,王富荣.引用神经网络的变压器故障诊断专家系统[J].计算机与现代化,2004(4):31-32. 被引量:7

共引文献15

相关作者

内容加载中请稍等...

相关机构

内容加载中请稍等...

相关主题

内容加载中请稍等...

浏览历史

内容加载中请稍等...
;
使用帮助 返回顶部