期刊文献+

基于多层激励量子神经网络的鲁棒音频水印算法 被引量:2

Improved quantum neural networks based audio watermarking algorithm
下载PDF
导出
摘要 设计了一种基于多层激励函数量子神经网络的音频水印算法。将水印信号嵌入载体语音的小波低频系数中,再训练量子神经网络建立水印嵌入前后低频小波系数间的联系以便在接收端恢复水印。同时,区别于传统的归一化方法,将小波低频系数规范到同一数量级,避免了恢复水印时小波低频系数的差错传播,提高了算法的鲁棒性。实验结果表明,设计的水印算法对加噪、滤波、重采样和再量化等攻击具有较强的鲁棒性,提取正确率相比BP网络水印算法平均提高1.8%。 A novel MAF-QNN (multilevel activation function-quantum neural networks) audio watermarking algorithm was proposed in this paper.Firstly,the watermark was embedded into the low frequency wavelet coefficients of the carrier speech.Then the QNN was trained to establish the contact between the low-frequency wavelet coefficients before and after the watermark embedded.By this way,the watermarking can be recovered at the receiving end.Distinctive from the conventional normalization method,the low frequency wavelet coefficients are normalized to the same order of magnitude,thus the error propagation of the low frequency wavelet coefficient can be avoided while the watermark recovering,and the robustness of the algorithm is improved.Experimental results show that,the watermarking algorithm designed in this paper is robust against some different attacks effectively,such as adding noise,filtering,re-sampling and re-quantization attacks.Furthermore,the correct rate of watermarking extraction is increased by an average of 1.8% compared with the BP neural network watermark.
出处 《解放军理工大学学报(自然科学版)》 EI 北大核心 2013年第5期473-478,共6页 Journal of PLA University of Science and Technology(Natural Science Edition)
基金 国家自然科学基金资助项目(61072042)
关键词 小波变换 多层激励函数 量子神经网络 音频水印 wavelet decomposition multilevel activation function quantum neural networks audio watermarking
  • 相关文献

参考文献9

  • 1牛少彰,舒南飞.数字水印的安全性研究综述[J].东南大学学报(自然科学版),2007,37(A01):220-224. 被引量:3
  • 2CAO Jian, HUANG Jiwu. Controllable secure water- marking technique for tradeoff between robustness and security[J]. Information Forensics and Security, IEEE Transactions on, 2012, 7(2) :821-826.
  • 3XIANG Yong, Natgunananthan, PENG Dezhong. A dual-channel time-spread echo method for audio water- marking[J]. Information Forensics and Security, IEEE Transactions on, 2012, 7 (2) .. 383-392.
  • 4CHEN Liang, HAO Huan,ZHENG Guohong. An au- dio watermarking of wavelet domain based on BP neu- ral network[C]. Nanjing: Wireless Communication and Signal Processing(WCSP), 2011 International Confer- ence on, 2011.
  • 5王振飞,宋胜利.Digital watermarking algorithm based on neural network in multiwavelet domain[J].Journal of Southeast University(English Edition),2007,23(2):211-215. 被引量:2
  • 6HAYKIN S. Neural networks: a comprehensive foun- dation[M]. 2nd ed. Upper Saddle River: Prentice Hall, 1999.
  • 7PURUSHOTHAMAN G, Quantum neural networks KARAYIANNIS N B. (QNNs) : inherently fuzzy feedforward neural networks[J]. Neural Networks, IEEE Transactions on, 1997, 8(3) :679-693.
  • 8孙健,张雄伟,孙新建.一种新的量子神经网络训练算法[J].信号处理,2011,27(9):1306-1312. 被引量:14
  • 9王金明,王耿,郑国宏,孙健.一种量子神经网络说话人识别方法[J].解放军理工大学学报(自然科学版),2012,13(3):242-246. 被引量:7

二级参考文献27

  • 1Graupe D, Principles of Artificial Neural Networks [ M ]. 2nd. River Edge, NJ, USA: World Scientific Publishing Co., Inc., 2007.
  • 2Purushothaman G, Karayiannis N B. Quantum neural net- works (QNNs) : inherently fuzzy feedforward neural net- works [ J ]. Neural Networks, IEEE Transactions on, 1997, 8(3) :679-693.
  • 3Karayiannis N B, Yaohua X. Training Reformulated Ra- dial Basis Function Neural Networks Capable of Identif- ying Uncertainty in Data Classification [ J ]. Neural Net- works, IEEE Transactions on, 2006, 17 (5) : 1222-1234.
  • 4Li J, Li P. Feature difference matrix and QNNs for facial expression recognition[ C]. Control and Decision Confer-ence 2008, Chinese.
  • 5Snyman J. Practical Mathematical Optimization[ M]. New York: Springer, 2005.
  • 6Yuhuan Z, Xiongwei Z, Jinming W, et al. Research on speaker feature dimension reduction based on CCA and PCA[ C]. Wireless Communications and Signal Process- ing (WCSP) , 2010 International Conference on, China.
  • 7MATSUI N,TAKAI M, NISHIMURA H. A network model based on qubit like neuron corresponding to quantum circuit[J]. Electronics and Communications in Japan, Part3,2000,83(10) : 67-73.
  • 8MATSUI N,TAKAI M,NISHIMURA H. Neural net- work based on QBP and its performance[C]. Proceed- ings of the IEEE-INNS-ENNS International Joint Con- ference on Neural Networks. Washington: IEEE Com- puter Society, 2000.
  • 9NARAYANAN A, MENNEER T. Quantum artificial neural network architectures and components[J]. In- formation Sciences, 2000,28 (3) : 231-255.
  • 10BING Xiang, BERGER T. Efficient text-independent speaker verification with structural Gaussian mixture models and neural network[J]. IEEE Transactions on Speech and Audio Processing, 2003, 11(5):447-456.

共引文献15

同被引文献25

引证文献2

相关作者

内容加载中请稍等...

相关机构

内容加载中请稍等...

相关主题

内容加载中请稍等...

浏览历史

内容加载中请稍等...
;
使用帮助 返回顶部