期刊文献+

一次粒径和二次粒径对LiFePO_4性能的影响 被引量:7

The Influence of Primary Particle Size and Secondary Particle Size on Performances of LiFePO_4
下载PDF
导出
摘要 研究了一次粒径和二次粒径对磷酸亚铁锂性能的影响。分别采用扫描电子显微镜(SEM)、激光粒度仪等分析了材料的一次粒径和二次粒径。将材料装配成扣式电池进行一系列的电化学特性测试,分析磷酸亚铁锂材料的充放电循环性能、氧化还原电位、阻抗等性能。研究发现一次粒径主要影响磷酸亚铁锂材料的放电容量、放电电位和阻抗,对材料的振实密度影响视其团聚程度而定;二次粒径对磷酸亚铁锂材料的振实密度影响很大。 The influences of primary particle size and secondary size on the performance of lithium iron phosphate were studied. Scanning electron microscope (SEM) and laser particle size analyzer were employed to characterize the primary particle size and secondary size of lithium iron phosphate samples. The lithium iron phophate samples were assembled to form the button batteries for the test of the electrochemical features of the samples, such as charge-discharge cycle performance, oxidation-reduction potentials and impedance. At last, it was concluded as following: primary particle size is significant for discharge capacity, discharge potential and impedance except for tap density; the tap density dependents on secondary particle size essentially. And for a high volumetric energy density lithium iron phosphate, what requirements must be met was proposed.
出处 《高校化学工程学报》 EI CAS CSCD 北大核心 2013年第5期884-888,共5页 Journal of Chemical Engineering of Chinese Universities
基金 四川大学青年基金(2011SCU11081) 国家科技支撑计划(2007BAQ01055) 国家自然科学基金(50574063)
关键词 磷酸亚铁锂 一次粒径 二次粒径 影响 lithium iron phosphate primary particle size secondary particle size influence
  • 相关文献

参考文献16

  • 1Padhi A K, Nanjundaswamy K S, Goodenough J B. Phospho-olivines as positive-electrode materials for rechargeable lithium batterise [J]. d Eleetroehem Soe, 1997, 4(144): 1188-1194.
  • 2Bandhauer T M, Garimella S, Fuller T F. A critical review of thermal issues in lithium-ion batteries [J]. J Eleetroehem Soe, 2011, 158(3): R1-R25.
  • 3Minato Egashira, AkinoriKanetomo, Nobuko Yoshimoto, et al. Charge-discharge rate of spinel lithium manganese oxide and olivine lithium iron phosphate in ionic liquid-based electrolytes [J]. Journal of Power Source, 2011,196(15): 6419-6424.
  • 4CHEN Wei-min, HUANG Yun-hui, YUAN Li-xia. Self-assembly LiFePO4/polyaniline composite cathode materials with inorganic acid as dopants for lithium-ion batteries [J]. Journal of Eleetroanalytical Chemistry, 2011,660(1): 108-113.
  • 5YIN Xiong-ge, HUANG Ke-long, LIU Su-qin, et al. Preparation and characterization of Na-doped LiFePO4 composites as cathode materials for lithium-ion batteries [J]. Journal of Power Source, 2010, 195(13): 4308-4312.
  • 6余红明,郑威,曹高劭,赵新兵.优化碳包覆对正极材料LiFePO_4/C高倍率性能的影响[J].物理化学学报,2009,25(11):2186-2190. 被引量:14
  • 7Julien C M, Mauger A, Zaghib K. Surface effects on electrochemical properties of nano-sized LiFePO4 [J]. Journal of Materials Chemistry, 2011, 21(27): 9955-9968.
  • 8Wang Qiang, Zhang Wei-xin, Yang Ze-heng, et al. Solvothermal synthesis of hierarchical LiFeP04 microflowers as cathode materials for lithium ion batteries [J]. Journal of Power Source, 2011,196(23): 10176-10182.
  • 9Asep Bayu Dani Nandiyanto, Kikuo Okuyama. Progress in developing spray-drying methods for the production of controlled morphology particles: From the nanometer submicrometer size ranges [J]. Advanced Powder Technology, 2011, 22( 1): 1-19.
  • 10Li Jian-lin, Claus Daniel, David Wood. Materilas processing for lithium-ion batteries [J]. Journal of Power Source, 2011, 196(5): 2452-2460.

二级参考文献37

共引文献24

同被引文献66

  • 1倪江锋,苏光耀,周恒辉,陈继涛.锂离子电池正极材料LiMPO_4的研究进展[J].化学进展,2004,16(4):554-560. 被引量:46
  • 2苏继桃,苏玉长,赖智广,禹萍,何显达.共沉淀法制备镍、钴、锰复合碳酸盐的热力学分析[J].硅酸盐学报,2006,34(6):695-698. 被引量:20
  • 3胡国荣,刘艳君,彭忠东,杜柯,高旭光.控制结晶法合成球形正极材料LiNi_(0.8)Co_(0.2)O_2及其电化学性能[J].中国有色金属学报,2007,17(1):59-67. 被引量:9
  • 4Armstrong A R, Bruce P G. Synthesis of layered LiMnOz as an electrode for rechargeable lithium batteries[J]. Nature, 1996, 381 (6582): 499-500.
  • 5Yang Z, Yang W, Evans D G, et al. Enhanced overcharge behavior and thermal stability of commercial LiCoO2 by coating with a novel material[J].Electrochem. Commun., 2008, 10 (8): 1136-1139.
  • 6Wilcox J, Patoux S, Doeff M. Structure and electrochemistry of LiNij/3Coj/3 'lyMnl/302 (M: Ti, Ah Fe) positive electrode materials[J]. Electrochem. Soc., 2009, 156 (3): A192-A198.
  • 7Schmok K. Modelling of mechanism of agglomeration of KC1 crystallization[J]. Cryst. Res. Technol., 1988, 23 (8): 967-972.
  • 8Wang D, Belharouak I, Koenig G M, et al. Growth mechanism of Nio.3Mno.7CO3 precursor for high capacity Li-ion battery cathodes[J]. J.Mater. Chem., 2011, 21 (25): 9290-9295.
  • 9Luo X, Wang X, Liao L, et al. Synthesis and characterization of high tap-density layered Li[Nil/3Col/3Mnl/3]O2 cathode material via hydroxide co-precipitation[J]:I. Power Sources, 2006, 158 ( 1 ): 654-658.
  • 10Lee K S, Myung S T, Moon J S, et al. Particle size effect of Li[Ni0.sMn0.5]O2 prepared by co-precipitation[J]. Electrochim. Acta, 2008, 53 (20): 6033-6037.

引证文献7

二级引证文献23

相关作者

内容加载中请稍等...

相关机构

内容加载中请稍等...

相关主题

内容加载中请稍等...

浏览历史

内容加载中请稍等...
;
使用帮助 返回顶部