摘要
本文采用线性插值的流线扩散有限元在Bakhvalov-Shishkin网格上求解一维对流扩散型的奇异摄动问题.在ε≤N^(-1)的前提下,可以得到,关于扰动参数ε是一致收敛的.在离散的SD范数下,其u-u_I的误差阶提高到N^(-2),u-u_h的误差阶达到N^(-2)(ln N)^(0.5).最后,通过数值算例,验证了理论分析.
In this paper, a linear Streamline-Diffusion finite element method on Bakhvalov-Shishkin mesh for singulurly perturbed convectiou - diffusion problem is analyzed. The method is shown to be convergent uniformly in the perturbation parameter 6 provided only that ε≤ N-1. A rate O(N-2(InN)0.5) in a discrete SD norm is established under certain regularity assumptions. Finally, through numerical experiments, we verified the theoretical results.
出处
《计算数学》
CSCD
北大核心
2013年第4期365-376,共12页
Mathematica Numerica Sinica
基金
浙江省自然科学基金(LQ12A01014)
嘉兴学院科研启动基金(70510017)资助