期刊文献+

基于分数阶神经滑模的某顶置火炮调炮控制 被引量:12

Adjustment and Control of a Certain Top-mounted Gun Based on a Novel Fractional Order Neural Sliding Mode Strategy
下载PDF
导出
摘要 针对某顶置火炮高低向调炮控制系统存在的强非线性特征,提出了一种分数阶神经网络滑模控制(FNSMC)策略。引入分数阶微积分(FOC),设计了分数阶PID型滑模面,获得了用于火炮控制的具有分数阶动力学特征的等效控制量。采用饱和函数作为切换函数,基于RBF神经网络对其切换增益进行在线动态调节,以获得动态最优性能。通过数值仿真分析比较了引入FOC后滑模控制系统的动静态特性,结果表明:分数阶滑模控制(FSMC)系统能够更为快速平滑的趋近稳态,这将有效抑制抖振现象,减小控制系统响应时间。半实物仿真试验结果表明:所提出的FNSMC策略明显优于传统整数阶神经网络滑模控制(CNSMC),具有更强的鲁棒性及更高的控制精度,可以很好实现预期的快速、平稳和高精度调炮。 A novel fractional order neural sliding mode control (FNSMC) strategy is proposed for the nonlinearities of a gun control system (GCS) which is used to control the elevation of a certain top- mounted gun. A fractional order PID type sliding surface is especially designed by introducing the frac- tional order calculus, and an equivalent control discipline with fractional order dynamics is induced. The saturation function is employed as switch function. To achieve the best control performances, a dynamic adjustment approach of the switch gain is introduced based on RBF neural network. The dynamic and static characteristics of the fractional order sliding mode control (FSMC) system are analyzed by numeri- cal simulation, demonstrating that FSMC can reach up to the steady state more smoothly, which signifi- cantly suppresses the chatter effects and enhances the response rate of the control system. Finally, a se- ries of experiments on a semi-physics simulation platform are conducted to investigate the performances of control system. The results show that the proposed FNSMC is of more excellence than the conventional in- teger order neural SMC ( CNSMC). The FNSMC-based control system is of better tracking accuracy as well as high robustness, and the fast, smooth and accurate adjustments of the gun can be achieved.
出处 《兵工学报》 EI CAS CSCD 北大核心 2013年第10期1311-1317,共7页 Acta Armamentarii
基金 国家重点基础研究发展计划项目(61311603)
关键词 自动控制技术 炮控系统 滑模控制 分数阶微积分 RBF神经网络 automatic control technology gun control system sliding mode control fractional order cal-culus RBF neural network
  • 相关文献

参考文献16

  • 1马晓军,冯亮,袁东,苏建强.坦克炮控系统非线性特性及自适应补偿控制[J].火力与指挥控制,2010,35(11):1-5. 被引量:11
  • 2冯亮,马晓军,闫之峰,李华.坦克炮控系统自适应模糊滑模控制方法[J].电机与控制学报,2007,11(1):65-69. 被引量:9
  • 3Fnaiech M A, Betin F, Capolino G A, et al. Fuzzy logic and slid- ing-mode controls applied to six-phase induction machine with open phases [ J ]. IEEE Transactions on Industrial Electronics, 2010,57(1) :354 - 364.
  • 4Nguyen T N, Su S, Nguyen H T. Robust neuro-slidiug mode mult- ivariable control strategy for powered wheelchairs [ J ]. 1EEE Transactions on Neural Systems and Rehabilitation Engineering, 2011,19(1) :105 - 111.
  • 5Tsai C YI, Chung I4 Y, Yu F M. Neuro-sliding mode control with its applications to seesaw systems[ J]. IEEE Transactions on Neu- ral Networks, 2004,15 ( 1 ) : 124 - 134.
  • 6Zhou X Q, Zhu Z W, Zhao S X, et al. An improved adaptive feedforward cancellation for trajectory tracking of fast tool servo based on fractional calculus [ C ]//Procedia Engineering. Dali: Elsevier, 2011:315 - 320.
  • 7Ma C B, Hori Y. The application backlash of fractional order con- trol to vibration suppression[ C]//Proceedings of the 2004 Ameri- can Control Conference. Boston : IEEE, 2004:2901 - 2906.
  • 8Tavazoei M S, Haeri M, Jafari S, et al. Some applications of frac-tional calculus in suppression of chaotic oscillations [ J]. IEEE Transactions on Industrial Electronics, 2008,55 ( 11 ) : 4094 - 4101.
  • 9Calderon A, Vinagre B, Feliu V. Fractional order control strate- gies for power electronic buck converters[JJ. Signal Processing, 2006,86(10) :2803 - 2819.
  • 10Efe M O, Kasnakoglu C. A fractional adaptation law for sliding mode control [J]. International Journal of Adaptive Control and Signal Processing, 2008,22 ( 10 ) :968 - 986.

二级参考文献68

共引文献119

同被引文献100

引证文献12

二级引证文献58

相关作者

内容加载中请稍等...

相关机构

内容加载中请稍等...

相关主题

内容加载中请稍等...

浏览历史

内容加载中请稍等...
;
使用帮助 返回顶部