期刊文献+

有序决策树的比较研究 被引量:5

Comparative Study on Ordinal Decision Trees
下载PDF
导出
摘要 有序分类是现实生活中广泛存在的一种分类问题。基于排序熵的有序决策树算法是处理有序分类问题的重要方法之一,这种方法是以排序互信息作为启发式来构建有序决策树。基于这项工作,通过引入模糊有序熵,并以模糊有序互信息作为启发式构建模糊有序决策树,对有序决策树进行了扩展。这两种算法在实际应用中各有自己的优劣之处,从四个方面对这两种算法进行了详细的比较,并指出了这两种算法的异同及优缺点。 Ordinal classification tasks widely exist in real life. Rank entropy based ordinal decision tree is one of the most important ways of dealing with ordinal classification problems. This decision tree algorithm selects rank mutual information as a heuristic. This paper introduces fuzzy rank entropy to construct an algorithm for building a fuzzy ordinal decision tree, which is an extension of ordinal decision tree. Both of them have been applied to dispose the ordinal classification tasks in a wide range. This paper compares the two algorithms based on four aspects, and shows their comparative advantages and disadvantages.
出处 《计算机科学与探索》 CSCD 2013年第11期1018-1025,共8页 Journal of Frontiers of Computer Science and Technology
基金 国家自然科学基金 河北省自然科学基金 河北大学自然科学基金 河北大学教育教学改革研究项目~~
关键词 有序分类 模糊有序互信息 有序决策树 ordinal classification fuzzy rank mutual information ordinal decision tree
  • 相关文献

参考文献16

  • 1Quinlan J R. Induction of decision tree[J]. Machine Learning, 1986,1(1): 81-106.
  • 2王熙照,孙娟,杨宏伟,赵明华.模糊决策树算法与清晰决策树算法的比较研究[J].计算机工程与应用,2003,39(21):72-75. 被引量:21
  • 3Wang Xizhao. Learning from fuzzy examp1es[D]. Harbin: Harbin Institute of Technology, 1998.
  • 4Zopounidis C, Doumpos M. Multicriteria classification and sorting methods-a literature review[J]. European Journal of Operational Research, 2002, 138(2): 229-246.
  • 5Ben-David A, Sterling L, Pao Y H. Learning and classifica?tion of monotonic ordinal concepts[J]. Computational Intel?ligence, 1989,5(1): 45-49.
  • 6Potharst R, Bioch 1. Decision trees for ordinal classification[J]. Intelligent Data Analysis, 2000, 4(2): 97-112.
  • 7Potharst R, Feelders A J. Classification trees for problems with monotonicity constraints[J]. SIGKDD Explorations, 2002,4(1): 1-10.
  • 8Cao- Van K, Beets B D. Growing decision trees in an ordinal setting[J]. International Journal of Intelligent Systems, 2003, 18(7): 733-750.
  • 9Barile N, Feelders A J. Nonparametric monotone classifica?tion with MOCA[C]//Proceedings of the 8th IEEE Interna- tional Conference on Data Mining (ICDM 2008), Pisa, Italy, Dec 15-19, 2008. Washington, DC, USA: IEEE Computer Society, 2008: 731-736.
  • 10HU QingHua GUO MaoZu YU DaRen LIU JinFu.Information entropy for ordinal classification[J].Science China(Information Sciences),2010,53(6):1188-1200. 被引量:29

二级参考文献7

  • 1Quinlan J R.Induction of Decision Trees[J].Machine Learning, 1986; (1):81~106.
  • 2Y Yuan,M J Shaw.Induction of fuzzy decision trees[J].Fuzzy Sets Syst, 1995 ;69(2) : 125-139.
  • 3.Tom M Mitchell.MACHINE LEARNING[M].International Edition,1997.
  • 4Bingchiang Jeng,Jeng Yung Mo,Liang Ting Peng.FILM :a fuzzy inductive learning method for automated knowledge acquisition[J].Decision Support Systems,1997;21:61-73.
  • 5Wang Xi zhao,Chen Bin,Qian Guo liang et al.On the Optimization of Fuzzy Decision Trees[J].Fuzzy Sets and Systems,2000; 112:117~ 125.
  • 6LIANG JiYe & QIAN YuHua Key Laboratory of Computational Intelligence and Chinese Information Processing,Ministry of Education,School of Computer & Information Technology,Shanxi University,Taiyuan 030006,China.Information granules and entropy theory in information systems[J].Science in China(Series F),2008,51(10):1427-1444. 被引量:41
  • 7HU Dan,LI HongXing,YU XianChuan.The information content of rules and rule sets and its application[J].Science in China(Series F),2008,51(12):1958-1979. 被引量:4

共引文献48

同被引文献49

引证文献5

二级引证文献9

相关作者

内容加载中请稍等...

相关机构

内容加载中请稍等...

相关主题

内容加载中请稍等...

浏览历史

内容加载中请稍等...
;
使用帮助 返回顶部