期刊文献+

Autotuning algorithm of particle swarm PID parameter based on D-Tent chaotic model 被引量:7

Autotuning algorithm of particle swarm PID parameter based on D-Tent chaotic model
下载PDF
导出
摘要 An improved particle swarm algorithm based on the D-Tent chaotic model is put forward aiming at the standard particle swarm algorithm. The convergence rate of the late of proposed algorithm is improved by revising the inertia weight of global optimal particles and the introduction of D-Tent chaotic sequence. Through the test of typical function and the autotuning test of proportionalintegral-derivative (PID) parameter, finally a simulation is made to the servo control system of a permanent magnet synchronous motor (PMSM) under double-loop control of rotating speed and current by utilizing the chaotic particle swarm algorithm. Studies show that the proposed algorithm can reduce the iterative times and improve the convergence rate under the condition that the global optimal solution can be got. An improved particle swarm algorithm based on the D-Tent chaotic model is put forward aiming at the standard particle swarm algorithm. The convergence rate of the late of proposed algorithm is improved by revising the inertia weight of global optimal particles and the introduction of D-Tent chaotic sequence. Through the test of typical function and the autotuning test of proportionalintegral-derivative (PID) parameter, finally a simulation is made to the servo control system of a permanent magnet synchronous motor (PMSM) under double-loop control of rotating speed and current by utilizing the chaotic particle swarm algorithm. Studies show that the proposed algorithm can reduce the iterative times and improve the convergence rate under the condition that the global optimal solution can be got.
出处 《Journal of Systems Engineering and Electronics》 SCIE EI CSCD 2013年第5期828-837,共10页 系统工程与电子技术(英文版)
基金 supported by the National Natural Science Foundation of China(61301011) the Fundamental Research Funds for the Central Universities(HIT.NSRIF.2012010) the China Postdoctoral Science Foundation(2013M540279) the Heilongjiang Postdoctoral Financial Assistance(LBH-Z11157)
关键词 D-Tent particle swarm proportional-integral- derivative (PID) parameter optimization. D-Tent, particle swarm, proportional-integral- derivative (PID) parameter optimization.
  • 相关文献

参考文献2

二级参考文献16

  • 1高尚,杨静宇.混沌粒子群优化算法研究[J].模式识别与人工智能,2006,19(2):266-270. 被引量:76
  • 2郝万君,强文义,胡林献,肖刚.基于改进粒子群算法的PID参数优化与仿真[J].控制工程,2006,13(5):429-432. 被引量:23
  • 3高尚,杨静宇.群智能算法及应用[M].北京:中国水利水电出版社,2006.
  • 4J Kennedy and R C Eberhart. Particle swarm optimization [C]. Proc: IEEE Intl. Conf. on Neural Networks, Ⅳ, 1942 - 1948. Piscataway, NJ: IEEE Service Center. 1995.
  • 5Y Shi and R C Eberhart. A modified particle swarm optimizer[ C ], IEEE Intemationnal Conference of Evolutionary Computation. Anchorage, Alaska : IEEE Press 1998 - 5.
  • 6陶永华.新型PID控制及应用[M].北京:机械工业出版社,1998..
  • 7Gorez R.A survey of PID auto-tuning methods[J].Journal A,1997,38(1):3-10.
  • 8刘益剑,张建明,王树青.基于PSO算法的PID控制器参数优化设计[C].杭州:第五届全球智能控制与自动化大会,2004.
  • 9Kennedy J,Eberhart R C.Particle swarm optimization[A].Proc IEEE Int Conf Neural Networks[C].Piscataway:IEEE Press,1995.
  • 10Eberhart R C,Shi Y.Particle swarm optimization:developments applications and resources[A].In Proc Congr Evolutionary Computation[C].Piscataway NJ:IEEE Press,2001.

共引文献30

同被引文献62

引证文献7

二级引证文献44

相关作者

内容加载中请稍等...

相关机构

内容加载中请稍等...

相关主题

内容加载中请稍等...

浏览历史

内容加载中请稍等...
;
使用帮助 返回顶部