期刊文献+

粗糙ε-支持向量回归模型 被引量:5

Rough ε-support vector regression model
下载PDF
导出
摘要 在ε-支持向量回归和粗糙v-支持向量回归模型的基础上,研究了新的粗糙ε-支持向量回归模型.利用固定对称边界粗糙ε-不敏感损失函数,得到粗糙ε-不敏感管,构造固定对称边界粗糙ε-支持向量回归模型;利用固定非对称边界粗糙-不敏感损失函数,得到粗糙εu-εd-不敏感管,构造固定非对称边界粗糙ε-支持向量回归模型.通过引进Lagrange函数和根据KKT条件,处理粗糙ε-支持向量回归模型的对偶问题. Two new rough e-support vector regression models are proposed based on ε-support vector regression, rough v-support vector regression and rough set theory. Firstly,a rough boundary ε-insensitive tube is defined with fixed symmetrical boundary rough ε-insensitive loss function, the method of optimization and ε-support vector regression model. Moreover we design a fixed symmetrical boundary rough ε-support vector regression model(RFSM SVR). Secondly,we extend the model to the case that asymmetrical loss function is considered. Finally, according to Karush Kuhn Tucker(KKT)conditions, we derive their dual problems by introducing the Lagrange functional into rough ; support vector regression models.
出处 《南京大学学报(自然科学版)》 CAS CSCD 北大核心 2013年第5期650-654,共5页 Journal of Nanjing University(Natural Science)
基金 国家自然科学基金(61170107 61222210) 河北省高等学校科学研究计划(Z2010188)
关键词 ε-支持向量回归 粗糙边界 粗糙ε-支持向量回归 粗糙集 ε- support vector regression, rough boundary, rough ε-support vector regression, rough set
  • 相关文献

参考文献15

  • 1Vapnik V. The nature of statistical learning theory. New York:Springer, 1995,188.
  • 2Cortes C, Vapnik V. Support vector networks. Machine I.earning, 1995,20:273-297.
  • 3Bai J W, Wang W J, Guo H S. A novel support vector machine active learning strategy. Journal of Nanjing University ( Natural Sciences), 2012, 48(2):182--189.
  • 4Deng N Y, Tian Y J. New method of data mining: support vector machine. Belling = Science Press, 2006, 408.
  • 5A. Smola B S. A tutorial on support vector regression. Statistics and Computing, 2004, 14 (3) :199-222.
  • 6Yang H, Chan L, King 1. Support vector machineregression for volatile stock market prediction. Yin H, Allinson N, Freeman R, et al. Intelligent Data Engineering and Automated Learning. Springer, Lecture Notes in Computer Science ( LNCS), 2002,2412 : 391 - 395.
  • 7Yang H, Margin variations in support vector regression for the stock market prediction. Phil M. Dissertation, Department o{ Computer Science and Engineering. The Chinese University of Hong Kong. http-//www, svms. org/finance/Yang2003. 6. pdf, 2013--06.
  • 8Pawlak Z. Rough sets. International Journal of Computer and Information Science. 1982,11 (5) : 341--356.
  • 9Pawlak Z. Rough sets: Theoretical aspects of reasoning about data. I)ordreeht : Kluwer Academic Publishers, 1991,229.
  • 10Pawlak Z,Skoworn A. Rudiments of rough sets. Information Science, 2007,177 : 3 - 27.

同被引文献53

引证文献5

二级引证文献43

相关作者

内容加载中请稍等...

相关机构

内容加载中请稍等...

相关主题

内容加载中请稍等...

浏览历史

内容加载中请稍等...
;
使用帮助 返回顶部