期刊文献+

一种新颖的双线性自适应滤波器 被引量:2

A Novel Bilinear Adaptive Filter
原文传递
导出
摘要 在非线性系统领域,Volterra滤波器作为一种经典的工具得到了广泛的应用。但是这种自适应滤波器的数学计算量非常大,尤其是当滤波器的阶数较大时,其应用往往受到很大限制。为了克服这个缺点,介绍了一种新颖的双线性自适应滤波器。详细分析了该滤波器的收敛性。在系统数学模型、算法和性能方面对该滤波器与Volterra自适应滤波器进行比较。仿真结果表明,这种新颖的滤波器在稳态误差和收敛速率等方面都比Volterra滤波器更优异。 Volterra filter is known to be an efficient adaptive filter in a variety of applications for non-linear systems. However, the huge amount of mathematical computation limits its further applications, especially as orders of the filter increase. To overcome this disadvantage of the Volterra filter, a novel adaptive filter based on layered bilinear architecture was proposed, which exhibited better convergence performance in terms of convergence speed and steady-state error, compared with the conventional 2hal-order Volterra filter.
出处 《微电子学》 CAS CSCD 北大核心 2013年第5期683-685,共3页 Microelectronics
关键词 自适应滤波器 非线性系统 双线性滤波器 VOLTERRA滤波器 Adaptive filter Nonlinear system Bilinear filter Volterra filter
  • 相关文献

参考文献9

  • 1WIDROW B,STEARNS S D.自适应信号处理[M].王永德,龙宪惠,译.北京:机械出版社,2008:215-218.
  • 2ZHAO H Q,ZHANG J S.A novel adaptive bilinear filter based on pipelined architecture[J].Digital Signal Processing,2009,20(1):23-38.
  • 3KUO S M,WU H T.Nonlinear adaptive bilinear filters for active noise control systems[J].IEEE Trans Commun,2005,52(3):617-624.
  • 4HAYKIN S,LI L.Nonlinear adaptive prediction of nonstationary signals[J].IEEE Trans Signal Process 1995,43(2):526-535.
  • 5HU R L,AHMED H M.Echo cancellation in high speed data transmission systems using adaptive layered bilinear filters[J].IEEE TraNS Commun,1994,42(2):655-663.
  • 6赵海全,张家树.混沌通信系统中非线性信道的自适应组合神经网络均衡[J].物理学报,2008,57(7):3996-4006. 被引量:9
  • 7GAO X Y,SNELGROVE W M,JOHNS D A,Nonlinear IIR adaptive filtering using a bilinear structure[C]∥IEEE Int Symp Circ Syst.Portland,OR,USA.1989:1740-1743.
  • 8HAYKIN S.自适应滤波器原理[M].第4版.北京:电子工业出版社,2006.
  • 9ManolakisDG IngleVK KogonSM.统计与自适应信号处理[M].北京:电子工业出版社,2003..

二级参考文献5

共引文献21

同被引文献19

引证文献2

二级引证文献4

相关作者

内容加载中请稍等...

相关机构

内容加载中请稍等...

相关主题

内容加载中请稍等...

浏览历史

内容加载中请稍等...
;
使用帮助 返回顶部