期刊文献+

一类广义Boussinesq方程的complexiton解

Complexiton solutions of a generalized Boussinesq equation
下载PDF
导出
摘要 利用Wronskian技巧构造了一类非线性孤子方程新的形式解.首先,给出非线性广义Boussinesq方程的双线性形式,利用Wronskian技巧,构造出该非线性方程所满足的一个线性偏微分条件方程组.然后,求解该微分条件方程组,得到了广义Boussinesq方程的Wronskian行列式解.在此基础上,根据系数矩阵的特征值类型,构造出该非线性广义Boussinesq方程的一类新的精确解即complexiton解. The Wronskian technique is further studied for constructing new Wronskian determinant solu-tions of nonlinear soliton equations .First ,the bilinear form of a generalized Boussinesq equation is giv-en .The linear partial differential equations are obtained with Wronskian technique .Then the Wronskian determinant solutions of the generalized Boussinesq equation are gained by solving the linear partial dif-ferential conditions .Based on these ,complexiton solutions of the generalized Boussinesq equation are constructed .
出处 《纺织高校基础科学学报》 CAS 2013年第3期359-363,共5页 Basic Sciences Journal of Textile Universities
基金 国家自然科学基金资助项目(11172233 11002110 71271171) 陕西省教育厅科学研究计划项目(2013JK0584) 西北工业大学基础研究基金项目(JC20110276)
关键词 广义BOUSSINESQ方程 WRONSKIAN技巧 HIROTA方法 complexiton解 generalized Boussinesq equation Wronskian technique Hirota method complexiton solution
  • 相关文献

参考文献11

  • 1ABLOWITZ M J,CLARKSON P A. Solitons, nonlinear evolution equations and inverse scattering[M]. Cambridge: Cambridge University Press, 1991.
  • 2HIROTA R. The direct methods in soliton theory[M]. Cambridge: Cambridge University Press,2004.
  • 3SALLE M A, MATVEEV V B. Darboux transformations and solitons[M]. Berlin: Springer, 1991.
  • 4FREEMAN N C, NIMMO J J C. Soliton solutions of the Korteweg-de Vries and Kadomtsev-Petviashvili equations.. The Wronskian technique[J]. Physics Letters A, 1983,95 : 1-3.
  • 5NIMMO J J C,FREEMAN N C. A method of obtaining the N-soliton solution of the Boussinesq equation in terms of a Wronskian[J]. Physics Letters A, 1983, 95 : 4-6.
  • 6MAW X, YOU Y C. Solving the Korteweg-de Vries equation by its bilinear form: Wronskian solutions[J]. Transac- tions of the American Mathematieal Society, 2005,357:1 753-1 778.
  • 7LI C X, MAW X, LIU X J, et al. Wronskian solutions of the Boussinesq equation-solitons, negatons, positons and complexitons[JT. Inverse Problems, 2007,23 : 279-296.
  • 8MAW X, LI C X, HE J S. A second Wronskian formulation of the Boussinesq equation[J-]. Nonlinear Analysis, 2009, 70:4 245-4 258.
  • 9TANG Y N, MA W X, XU W, et al. Wronskian determinant solutions of the (3 q- 1)-dimensional Jimbo-Miwa equation [J]. Applied Mathematics Computation,2011, 217:8 722-8 730.
  • 10CHEN H T,ZHANG H Q. New double periodic and multiple soliton solutions of the generalized(2-1-1 )-dimenoussinesq equation[J3. Chaos Solitons Fraetal, 2004,20 : 765-769.

相关作者

内容加载中请稍等...

相关机构

内容加载中请稍等...

相关主题

内容加载中请稍等...

浏览历史

内容加载中请稍等...
;
使用帮助 返回顶部