期刊文献+

滤纸为模板制备中空SnO_2纳米管锂离子电池负极材料 被引量:15

Hollow Nanotubular SnO_2 Templated by Cellulose Fibers for Lithium Ion Batteries
下载PDF
导出
摘要 以植物纤维素(滤纸)为模板, 制备了中空SnO2纳米管作为锂离子电池负极材料。通过XRD、SEM、TEM和HR?TEM表征产物的组分、形貌和结构, 表明合成材料是由粒度大小为5~15 nm SnO2粒子组装成的中空纳米管。同时, N2吸附/脱附测试表明此材料为疏松的介孔结构。材料在电流密度100 mA/g 时, 可逆容量稳定在580 mAh/g, 60次循环后容量仍保持为550 mAh/g。制备的中空SnO2纳米管作为锂离子电池负极材料, 具有较高的放电容量和良好的电化学循环性能。 An effective method of using cellulosic substances (filter paper) as template was employed to prepare SnO2 nanotubular materials examined as anode for Li-ion battery. According to XRD, SEM, TEM and HR-TEM analysis, the synthesized nanotubular materials retained morphological hierarchy of the filter paper, and each nanotube was composed of nano-sized SnO2 ranged from 5 nm to 15 nm. At the same time, the N2 adsorption/desorption tests show that the materials are mesoporous structure. It exhibits a stable reversible capacity of 580 mAh/g at constant current density of 100 mA/g, and the reversible capacity remains at 550 mAh/g after 60 cycles, showing a high reversible capacity and stable cycle performance as anode for Li-ion battery.
出处 《无机材料学报》 SCIE EI CAS CSCD 北大核心 2013年第11期1213-1216,共4页 Journal of Inorganic Materials
基金 国家自然科学基金(U0937601) 教育部国家重点项目(210204) 国家重点基础研究发展规划(863计划)(2011AA03A405)~~
关键词 SNO2 纳米管 纤维素 锂离子电池 tin oxide nanotube natural cellulose Li-ion batteries
  • 相关文献

参考文献26

  • 1Cakan R D, Hu Y S, Antonietti M, et al. Facile one-pot synthesis of mesoporous SnO2 microspheres via nanoparticles assembly and lithium storage properties. Chemistry of Materials, 2008, 20(4): 1227-1229.
  • 2Armand M, Tarascon J M. Building better batteries. Nature, 2008, 451: 652-657.
  • 3Liu Z, Zhang D, Han S, et al. Laser ablation synthesis and elec- tronic transport studies of tin oxide nanowires. Advanced Mate- rials, 2003,15(20): 1754-1757.
  • 4Liu Y, Dong J, Liu M. Well-aligned"nano-box-beams"of SnO2. Advanced Materials, 2004,16(4): 353-356.
  • 5Ji L W, Lin Z, Alcoutlabi M, et al. Recent developments in nanostructured anode materials for rechargeable lithium-ion bat- teries. Energy Environ. Sci., 2011, 4: 2682-2699.
  • 6Zhang F, Wang K X, Wang X Y, et al.Synthesis of SnO2 hollow nanostructures with controlled interior structures through a tem- plate-assisted hydrothermal route. Dalton Trans., 2011, 40: 8517-8519.
  • 7Wang C, Du G H, St:hl K, et al. Ultrathin SnOz nanosheets: ori- ented attachment mechanism, nonstoichiometric defects, and enhanced lithium-ion battery performances. Journal of Physical Chemistry C, 2012, 116: 4000-4011.
  • 8Wang C M, Xu W, Liu J, et al. In situ transmission electron mi- croscopy observation of microstructure and phase evolution in a SnO2 nanowire during lithium intercalation. Nano Lett., 2011, 11(5): 1874-1880.
  • 9Li J X, Zhao Y, Wang N, et al. A high performance carrier for SnO2 nanoparticles used in lithium ion battery. Chemical Com- munications, 2011, 47: 5238-5240.
  • 10Wang Y, Zeng H C, Lee J Y. Highly reversible lithium storage in porous SnO2 nanotubes with coaxially grown carbon nanotube overlayers. Advanced Materials, 2006, 18(5): 645-649.

同被引文献188

引证文献15

二级引证文献54

相关作者

内容加载中请稍等...

相关机构

内容加载中请稍等...

相关主题

内容加载中请稍等...

浏览历史

内容加载中请稍等...
;
使用帮助 返回顶部