期刊文献+

低复杂度圆阵幅相误差校正方法

Calibration method with low complexity for gain and phase errors in circular arrays
原文传递
导出
摘要 提出一种简易有效且便于实际系统应用的圆阵幅相误差校正方法.在圆阵中心放置一发射校准信号辅助天线,通过计算比较各阵元接收信号与基准阵元通道接收信号的互相关系数即可得到各阵元通道的相对幅相误差闭式解,计算量较小,估计精度高.1×104次统计独立仿真分析了该方法在不同信噪比和不同快拍数情况下的性能,在校准信号信噪比25dB,采样数400的情况下,幅度估计误差为0.03,相位估计误差为0.5°.对有幅相误差的8元圆阵进行了二维测向实验,经所提方法校正后的阵列测向方位角误差为0.3°、俯仰角误差为1.6°,仿真及实验结果验证了该校准方法的有效性. An effective and practical method to calibrate gain and phase errors of a circular array (CA) was proposed. By putting an assistant sensor on the center of CA, the method can obtain the relative- ly gain and phase errors of each sensor with low computational burden and high estimation precision. The performance of the method was analyzed through the computer simulation by 1 × 104 times in the different signal-to-noise ratio (SNR) and different snapshots, respectively. The estimated errors of gain and phase were 0.03 and 0. 5° by the proposed method when SNR was 25 dB and snaps was 400. The method was also used to calibrate the gain and phase errors of 8-element uniform circular array (UCA) and performed to be effective by 2-dimension directions finding experimental study with the estimation errors of azimuth and elevation being 0.3° and 1.6°.
出处 《华中科技大学学报(自然科学版)》 EI CAS CSCD 北大核心 2013年第9期1-5,10,共6页 Journal of Huazhong University of Science and Technology(Natural Science Edition)
基金 国家科技支撑计划资助项目(2008BAC36B02)
关键词 波达方向 校正 幅相误差 圆阵 测向实验研究 低复杂度 direction of arrival~ calibration gain and phase errors~ circular array~ direction findingexperiments~ low complexity
  • 相关文献

参考文献4

二级参考文献27

  • 1邵丽君,赵淑清.一种优化非均匀阵列天线测向性能的方法[J].电讯技术,2005,45(2):116-119. 被引量:4
  • 2余继周,陈定昌.一种DOA估计的快速子空间算法[J].现代电子技术,2005,28(12):90-92. 被引量:11
  • 3李立萍,黄克骥,陈天麒.基于STFT的相干宽带调频信号2-D到达角估计[J].电子与信息学报,2005,27(11):1760-1764. 被引量:10
  • 4Manikas A, Karimi H R, Dacos I. Study of the detection and resolution capabilities of a one-dimensional array of sensors by using differential geometry [ J ]. IEE Proceedings Radar, Sonar and Navigation, 1994, 141 (2) : 83-92.
  • 5Karimi H R, Manikas A. Manifold of a planar array and its effects on the accuracy of direction-finding systems [ J ]. IEE Proceedings Radar, Sonar and Navigation, 1997, 144(6) : 321-329.
  • 6Stoica P, Nehorai A. MUSIC, maximum likelihood, and Cramer-Rao bound: further results and comparisons. IEEE Trans on ASSP, 1990, 38(12) : 2140-2150.
  • 7Manikas A, Proukakis C, Lefkaditis V. Investigative study of planar array ambiguities based on " Hyperhelical " parameterization. IEEE Trans on Signal Processing, 1999. 47(6) : 1532-1541.
  • 8Belouchrani A, Amin M G. Time-frequency MUSIC [J]. IEEE Signal Processing Letters, 1999, 6 (5): 109-110.
  • 9Gershman B, Amin M G. Wideband direction of arrival estimation of multiple chirp signals using spatial time-frequency distribution[J]. IEEE Signal Processing Letters, 2000, 7(6): 152-155.
  • 10Zhang Y, Mu W, Amin M G. Subspaee analysis of spatial time-frequency distribution matrices[J]. IEEE Trans on SP, 2001, 49(4): 747-759.

共引文献18

相关作者

内容加载中请稍等...

相关机构

内容加载中请稍等...

相关主题

内容加载中请稍等...

浏览历史

内容加载中请稍等...
;
使用帮助 返回顶部