期刊文献+

探测光束会聚角对表面等离子体共振传感器性能的影响 被引量:2

Influences of the Probe Beam Convergence on the Performance of Surface Plasmon Resonance Sensor
原文传递
导出
摘要 建立了基于波长调制的Kretschmann结构表面等离子体共振(SPR)传感器系统中整形光路和探测光斑直径与会聚角关系的理论模型。分析了探测光束会聚角对SPR传感器共振波长、共振曲线半峰全宽和共振峰深度的影响。随着探测光束会聚角的减小,共振波长增大,共振曲线的半峰全宽减小,共振峰深度增大,传感器的抗干扰能力增强,系统分辨率提高。通过实验对此进行了验证,考虑会聚角时实验与仿真结果符合得较好;会聚角从0.8°减小到0°时,共振波长从662nm减小到623nm,共振曲线半峰全宽从157nm减小到117nm,共振峰深度从70.5%增大到93.3%。 In the surface plasmon resonance (SPR) sensor system with Kretschmann configuration based on wavelength modulation technology, the theoretical model of the influence of beam reshaped system and the beam diameter on the convergence angle is built. The influence of convergence angle of probe beam on resonance wavelength, the full width at half maximum (FWHM) and the depth of resonance peak is analyzed. As the convergence angle decreases, the resonance wavelength is enhanced, the FWHM is reduced, and the depth of resonance peak is enhanced. As a result, the capacity of resisting disturbance is enhanced, and the system resolution is enhanced. It is confirmed by experiment, and the experimental result fit well with the simulated one when considering the influence of convergence angle. When the convergence angle varies from 0.8° to 0°, the resonance wavelength varies from 662 nm to 623 nm, the FWHM is reduced from 157 nm to 117 nm, and the depth of resonance peak is enhanced from 70.5 % to 93.3 %.
出处 《中国激光》 EI CAS CSCD 北大核心 2013年第10期241-246,共6页 Chinese Journal of Lasers
基金 国家自然科学基金(61078017)
关键词 传感器 会聚角 表面等离子体共振 反射率 sensors convergence angle surface plasmon resonance reflectance
  • 相关文献

参考文献17

  • 1K M Byun, S J Yoon, D H Kim, et al: Experimental study of sensitivity enhancement in surface plasmon resonance biosensors by use of periodic metallic nanowires[J]. Opt Lett, 2007, 32 (13): 1902-1904.
  • 2R Slavik, J Homda. Ultrahigh resolution long range surface plasmon-hased sensor[J]. Sensors and Actuators B: Chemical, 2007, 123(1): 10-12.
  • 3Xuan Dou, Blayne M Phillips, Pei-Yu Chung, et al: High surface plasmon resonance sensitivity enabled by optical disks[J]. Opt Lett, 2012, 37(17): 3681-3683.
  • 4B Liedberg, C Nyiander, I Lunstrom. Surface plasmon resonance for gas detection and biosensing[J]. Sensors and Actuators, 1983, 4(1) : 299-304.
  • 5R C Mucic, J J Storhoff, C A Mirkin, et al: DNA3 directed synthesis of binary nanoparticle network materials[J]. J Am Chem Soe, 1998, 120(48): 12674-12675.
  • 6李莹,钟金钢,张永林.基于表面等离子体共振成像的指纹采集[J].中国激光,2006,33(8):1143-1147. 被引量:14
  • 7张美,代吉祥,杨明红,田旭,周树民,周培.基于表面等离子体共振的钯膜氢气传感器[J].中国激光,2011,38(12):123-127. 被引量:10
  • 8E Kroger, E Kretschmann. Scattering of light by slightly rough surfaces or thin films including plasma resonance emission[J]. Zeitschrift For Physik, 1970, 237(1) : 1-15.
  • 9J Homola, S S Yee, G Gauglitz. Surface plasmon resonance sensors: review[J]. Sensors and Actuators B: Chemical, 1999, 54(1-2) : 3-15.
  • 10Ming Bao, Ge Li, Dongmei Jiang, et al: Surface plasmon optical sensor with enhanced sensitivity using top ZnO thin film[J]. Appl Phys A, 2012, 107(2): 279-283.

二级参考文献39

共引文献43

同被引文献61

  • 1李秀燕,杨志林,周海光.用离散偶极近似理论研究银纳米粒子的消光光谱与介电环境的关系[J].云南大学学报(自然科学版),2005,27(S1):140-144. 被引量:10
  • 2William L B, Alain D, Thomas W T. Surface plasmon subwavelength optics[J]. Nature, 2003, 424(6950): 824-830.
  • 3Wang Y, Wang J, Gao S, et al: Two-way directional plasmonic excitation with two unsymmetrical metallic slits[J]. Appl Phys Express, 2013, 6(2): 022003.
  • 4Wang J, Wang Y, Zhang X, et al: Splitting and unidirectional excitation of surface plasmon polaritons by two uniform metallic nanoslits with a nanocavity antenna[J]. Journal Modern Optics, 2010, 57(17): 1630-1634.
  • 5Ebbesen T W, Lezec H J, Ghaemi H F, et al: Extraordinary optical transmission through sub-wavelength hole arrays [J]. Nature, 1998, 391(6668): 667-669.
  • 6Ghaemi H F, Thio T, Grupp D E, et al: Surface plasmons enhance optical transmission through subwavelength holes[J]. Phys Rev B, 1998, 58(11): 6779-6782.
  • 7Martin M L, Garcia V F J, Lezec H J, et al: Theory of extraordinary optical transmission through subwavelength hole arrays[J]. Phys Rev Lett, 2001, 86(6): 1114-1117.
  • 8rakakura Y. Optical resonance in a narrow slit in a thick metallic screen[J]. Phys Rev Lett, 2001, 86(24): 5601-5603.
  • 9Lezec H J, Thio T. Diffracted evanescent wave model for enhanced and suppressed optical transmission through subwavelength hole arrays[J]. Opt Express, 2004, 12(16): 3629-3651.
  • 10Sun Z J, Kim H K. Refractive transmission of light and beam shaping with metallic nano- optic lenses[J]. Appl Phys Lett, 2004, 85(4): 642-644.

引证文献2

二级引证文献4

相关作者

内容加载中请稍等...

相关机构

内容加载中请稍等...

相关主题

内容加载中请稍等...

浏览历史

内容加载中请稍等...
;
使用帮助 返回顶部