期刊文献+

SAR与光学影像在煤矿信息解译中的应用 被引量:2

Application on information interpretation of SAR and optical image in coal mine
原文传递
导出
摘要 为充分挖掘矿区SAR影像丰富独特的空间信息,以SAR和SPOT5影像为数据源,基于目标成像知识理论,分析矿区典型目标成像特性,经几何校正等预处理,采用阈值分割、形态学滤波和基于特征融合等信息提取方法,建立基于特征知识信息提取的互补模式,对比分析SAR和SPOT5影像及融合后影像的解译能力.研究结果表明:该方法可使矿区露天采场、大型车辆、矿山道路网、复垦区、排土场、管线、建筑物等典型地物得到较好的解译.该成果在矿山监测中具有一定的应用价值和指导意义. In order to fully tap the rich and unique spatial information of SAR images in mining areas, SAR and SPOT5 image was took to analysis the target imaging characteristics in mining area based on the theory, and image preprocessing such as geometric correction was conducted, and the method of threshold segmentation, morphological filtering and the feature information fusion method was used to extract information, and a complementary mode was established based on the characteristic knowledge information, and the interpretation ability of SAR,SPOT5 image and fused image were analyzed Lastly. The research result shows that feature information such as open stope mining areas, large vehicles, mining road nets, reclamation-areas, dumps, pipelines, buildings, etc. have got a better interpretation. The achievements can be applied to the mine monitoring.
作者 赵静 武文波
出处 《辽宁工程技术大学学报(自然科学版)》 CAS 北大核心 2013年第6期768-772,共5页 Journal of Liaoning Technical University (Natural Science)
基金 辽宁省创新团队计划资助项目(2010-2012) 中国地质调查局矿山遥感调查与监测资助项目(121201122083)
关键词 合成孔径雷达 SPOT 高空间分辨率 融合 典型地物 信息提取 解译 煤矿 SAR SPOT high spatial resolution fusion typical features information extraction interpretation coal mine
  • 相关文献

参考文献10

二级参考文献92

共引文献240

同被引文献22

  • 1李全,王海燕,李霖.基于最大似然分类算法的土地覆盖分类精度控制研究[J].国土资源科技管理,2005,22(4):42-45. 被引量:13
  • 2朱俊杰,范湘涛,邵芸.高分辨率SAR与光学图像融合用于建筑物屋顶提取[J].中国科学院研究生院学报,2006,23(2):178-185. 被引量:10
  • 3仇春平,张继贤,王岐岭,黄国满,周仕伦,赵争.机载合成孔径雷达影像与航片判绘的对比研究[J].测绘科学,2006,31(2):40-41. 被引量:4
  • 4邹丽丽.SAR与SPOT数据融合方法在道路提取中的应用[D].广州:广州大学研究生学院,2010.
  • 5Jonard F,Weihermuller L,Schwank M,et al.Estimation of Hydraulic Properties of a Sandy Soil Using Ground-Based Active and Passive Microwave Remote Sensing[J].Geoscience and Remote Sensing,2015,53(6):3095-3109.
  • 6Mather P,Tso B.Classification methods for remotely sensed data[M].Boca Raton:CRC press,2009.
  • 7Yang X.Remote Sensing and Geospatial Technologies for Coastal Ecosystem Assessment and Management[M].Berlin:Springer-Verlag,2011.
  • 8Cheng J,Liu H,Liu T,et al.Remote sensing image fusion via wavelet transform and sparse representation[J].ISPRS Journal of Photogrammetry and Remote Sensing,2015,104:158-173.
  • 9Johnson B.Remote Sensing Image Fusion at the Segment Level Using a Spatially-Weighted Approach:Applications for Land Cover Spectral Analysis and Mapping[J].ISPRS International Journal of Geo-Information,2015,4(1):172-184.
  • 10黄国满,张继贤,赵争,燕琴.机载干涉SAR测绘制图应用系统研究[J].测绘学报,2008,37(3):277-279. 被引量:27

引证文献2

二级引证文献1

相关作者

内容加载中请稍等...

相关机构

内容加载中请稍等...

相关主题

内容加载中请稍等...

浏览历史

内容加载中请稍等...
;
使用帮助 返回顶部