期刊文献+

An Extension of Chebyshev's Maximum Principle to Several Variables

An Extension of Chebyshev's Maximum Principle to Several Variables
下载PDF
导出
摘要 In this article, we generalize Chebyshev's maximum principle to several variables. Some analogous maximum formulae for the special integration functional are given. A sufficient condition of the existence of Chebyshev's maximum principle is also obtained. In this article, we generalize Chebyshev's maximum principle to several variables. Some analogous maximum formulae for the special integration functional are given. A sufficient condition of the existence of Chebyshev's maximum principle is also obtained.
出处 《Communications in Mathematical Research》 CSCD 2013年第4期363-369,共7页 数学研究通讯(英文版)
基金 The NSF(10826071,61033012,19201004,11271060,61272371)of China and the Fundamental Research Funds for the Central Universities
关键词 cubature formula orthogonal polynomial Chebyshev's maximum prin-ciple nonstandard Gaussian quadrature cubature formula, orthogonal polynomial, Chebyshev's maximum prin-ciple, nonstandard Gaussian quadrature
  • 相关文献

参考文献8

  • 1Freud G. On the greatest zero of an orthogonal polynomial I. Acta Sci. Math. (Szeged), 1973, 34: 91-97.
  • 2Freud G. On the greatest zero of an orthogonal polynomial II. Acta Sci. Math. (Szeged), 1974, 36: 49-54.
  • 3Freud G. On estimations of the greatest zeros of an orthogonal polynomial. Acta Math. Hunqar., 1974,25: 99-107.
  • 4Freud G. On the greatest zero of an orthogonal polynomial. J. Approx. Theory, 1986,46: 16-24.
  • 5Dunkl C F, Xu Y. Orthogonal Polynomials of Several Variables. Cambridge: Cambridge Univ. Press, 200l.
  • 6Wang R H, Zhou H. Chebyshev's maximum principle in several variables. J. Approx. Theory, 2003, 123: 276-279.
  • 7Bojanov B, Petrova G. Numerical integration over a disc: A new Gaussian quadrature formula. Numer. Math., 1998, 80: 39-59.
  • 8Bojanov B, Petrova G. Uniqueness of the Gaussian quadrature for a ball. J. Approx. Theory, 2000, 104: 21-44.

相关作者

内容加载中请稍等...

相关机构

内容加载中请稍等...

相关主题

内容加载中请稍等...

浏览历史

内容加载中请稍等...
;
使用帮助 返回顶部