期刊文献+

自适应量子前向对传算法研究 被引量:6

Research on Adaptive Quantum Forward Counter Propagation Algorithm
下载PDF
导出
摘要 该文研究了量子理论与量子神经网络原理,深入分析了量子前向对传网模型与基于递归加权最小二乘的量子前向对传算法。提出了量子前向对传网的定义与知识集,提出了自适应量子前向对传算法,证明了算法的收敛性。该算法全面考虑了在本次学习之前学习速率的总体状况,通过自适应地改变学习速率,控制学习速率适时变化,改善网络的收敛性。有效克服了学习速率过高导致网络振荡发散与学习速率太小降低网络收敛速度的缺陷。仿真结果表明,自适应量子前向对传算法相对基于递归加权最小二乘的量子前向对传算法具有较少的网络训练迭代次数和较高的分类精度。 This paper studies the quantum theory and the principle of Quantum Neural Network (QNN). Model of Quantum Forward Counter Propagation Neural Network (QFCPNN) and Recursive Weighted Least Squares Quantum Forward Counter Propagation Algorithm (RWLS_QFCPA) are analyzed. Definition and knowledge set of QFCPNN is proposed. Adaptive Quantum Forward Counter Propagation Algorithm (AQFCPA) is proposed and its convergence is proved. Full account of overall situations of learning rates before current learning, this algorithm improves network convergence by adaptively changing the learning rate and controls timely changing learning rate. This new algorithm effectively overcomes some defects including network oscillations divergence due to high learning rate and reducing network convergence speed due to low learning rate. The simulation results indicate that AQFCPA has less number of iterations of network training and higher classification accuracy relative to RWLS_QFCPA.
作者 李楠 侯旋
出处 《电子与信息学报》 EI CSCD 北大核心 2013年第11期2778-2783,共6页 Journal of Electronics & Information Technology
基金 陕西省科技厅自然科学基础研究计划(2011JQ9004)资助课题
关键词 量子神经网络 量子前向对传网 自适应 收敛性 Quantum Neural Network (QNN) Quantum Forward Counter Propagation Neural Network (QFCPNN) Adaptive Convergence
  • 相关文献

参考文献15

  • 1Gupta S and Zia R K P. Quantum neural networks[J]. Journal of Computer and System Science, 2001, 63(3): 355-383.
  • 2Narayanan A and Menneer T. Quantum artificial neural network architectures and components[J]. Information Sciences, 2000, 128(3/4): 231-255.
  • 3Ventura D. Quantum computing and neural information processing[J]. Information Sciences, 2000,128(3/4): 147-148.
  • 4Hou Xuan. Research on quantum adaptive resonance theory neural network[C]. 2011 International Conference on Electronic & Mechanical Engineering and Information Technology (EMEIT), Harbin, 2011, Vol. 8: 3885-3888.
  • 5Hou Xuan. Research of model of quantum learning vector quantization neural network[C]. 2011 International Conference on Electronic & Mechanical Engineering and Information Technology (EMEIT), Harbin, 2011, Vol. 8: 3893-3896.
  • 6Hou Xuan and He Ming-yi. Study of detection technique simulation of high resolution radar based on BP neural network[C]. 2007 International Conference on Natural Computation (ICNC), Haikou, 2007, VoLl: 426-430.
  • 7陈蕾,杨庚,张迎周,陈燕俐.基于核Batch SOM聚类优化的语义Web服务发现机制研究[J].电子与信息学报,2011,33(6):1307-1313. 被引量:6
  • 8高培,赵鑫,王士同.基于有效神经元的自组织模糊神经网络算法[J].计算机工程与应用,2012,48(35):50-56. 被引量:2
  • 9张亮,陆余良,杨国正,张旻.基于球面多区域划分的并行量子遗传算法[J].电子与信息学报,2011,33(5):1035-1041. 被引量:8
  • 10易运晖,朱畅华,裴昌幸,权东晓.偏振旋转的量子私有信息检索方案[J].电子与信息学报,2012,34(10):2353-2357. 被引量:3

二级参考文献38

  • 1郑晓东,石岩,刘树东,肖新莲.用于机器手控制的在线的自组织模糊神经网络[J].齐齐哈尔大学学报(自然科学版),2007,23(2):57-61. 被引量:1
  • 2Michael D P,Stefan S,and Nikola K.A versatile quantum-inspired evolutionary algorithm[C].IEEE Congress on Evolutionary Computation,Singapore,2007:423-430.
  • 3Li Pan-chi and Li Shi-yong.Quantum-inspired evolutionary algorithm for continuous spaces optimization based on bloch coordinates of qubits[J].Neurocomputing,2008,72(1-3):581-591.
  • 4Lau T W,Chung C Y,and Wong K P,et al..Quantum inspired evolutionary algorithm approach for unit commitment[J].IEEE Transactions on Power Systems,2009,24(3):1503-1512.
  • 5Yan Li-li,Chen He-nian,and Ji Wen-tian,et al..Optimal VSM model and multi-object quantum-iuspired genetic algorithm for web informationretrieval[C].Compter Network and Multimedia Technology,Wuhan,2009:1-4.
  • 6Vlachogiannis J G and Lee K Y.Quantum-inspired evolutionary algorithm for real and reactive power dispatch[J].IEEE Transactions on Power Systems,2008,23(4):1627-1636.
  • 7Platzer C, Rosenberg F, and Dustdar S. Web service clustering using multidimensional angles as proximity measures[J]. A CM Transactions on Internet Technology, 2009 9(3): 1-26.
  • 8Martin D, Burstein M, and Hobbs J, et al.. OWL-S: semantic markup for web services, http://www.w3.org/Submission /OWL-S/, 2004-11-22.
  • 9Charib T F, Fouad M M, and Aref M M. Fuzzy document clustering approach using WordNet lexical categories[C]. Advanced Techniques in Computing Sciences and Software Engineering, Heidelberg: Springer Press, 2010: 181-186.
  • 10Wu J and Wu Z H. Similarity-based Web service matchmaking[C]. International Conference on services Computing, IEEE Computer Society, Orlando, FL, USA, 2005: 287-294.

共引文献26

同被引文献101

引证文献6

二级引证文献23

相关作者

内容加载中请稍等...

相关机构

内容加载中请稍等...

相关主题

内容加载中请稍等...

浏览历史

内容加载中请稍等...
;
使用帮助 返回顶部