期刊文献+

超燃冲压发动机尾喷管非均匀进口的冷流试验与数值模拟 被引量:9

Cold Flow Experiment and Numerical Simulation on Nonuniform Entrance Flow of Scramjet Nozzle
原文传递
导出
摘要 超燃冲压发动机尾喷管与燃烧室直接相连,由于没有几何喉道和收缩段的整流作用,实际尾喷管的进口气流是非均匀的。为了研究非均匀进口对超燃冲压发动机尾喷管性能的影响,以非均匀马赫数分布为目标,设计了非均匀出口风洞,并进行了风洞出口流场校核试验,试验校核得到的马赫数与目标值的最大偏差只有1.95%。在此基础上,进行了非均匀进口对超燃冲压发动机尾喷管气动性能影响的数值模拟研究,并进行了相应的风洞试验,试验与数值模拟结果吻合良好,验证了数值模拟结果的准确性。研究结果表明,非均匀进口会造成尾喷管推力下降2.92%~5.02%、负升力增加可达17.2%、俯仰力矩减小4.2%~6.7%。 A scramjet nozzle is directly connected to the combustor and there is no contraction section or throat, which makes the nozzle entrance flow nonuniform. In order to learn the influence of the nonuniform entrance flow on the nozzle per- formance, wind tunnel nozzles are designed on nonuniform Mach number distribution of the exit flow, and verification tests in- dicate that the exit flow of the wind tunnel nozzles rather perfect for later experiments and the maximum deviation of Mach number from the trarget value is only 1.95%. Then, experiments on scramjet nozzle nonuniform entrance flow show that the numerical study is accurate. Detailed numerical research on the nonuniform entrance flow of a scramjet nozzle is done which shows that the nonuniform entrance flow of the scramjet nozzle would reduce the thrust by 2.92 %-5.02 %, increase negative lift up to 17.2% ,and decrease pitch moment by 4.2%-6.7%.
出处 《航空学报》 EI CAS CSCD 北大核心 2013年第10期2308-2315,共8页 Acta Aeronautica et Astronautica Sinica
关键词 超燃冲压发动机 单边膨胀喷管 气动性能 数值模拟 风洞试验 scramjet single expansion ramp nozzle aerodynamic performance numerical simulation wind tunnel experi-ment
  • 相关文献

参考文献3

二级参考文献65

  • 1[1]Mitani T,Tani K,Sato S,et al.Experimental validation of scramjet nozzle performance[R].AIAA 92-3290.
  • 2[2]Tomioka S,Hiraiwa T,Mitani T,et al.A study on boundary layer in a scramjet nozzle operating under high enthalpy conditions[R].AIAA 94-2820.
  • 3[3]Pierce M A,Ely W L.A computational exploration of the importance of three-dimensionality,boundary layer development,and flow chemistry to the prediction of scramjet nozzle forces and moments[R].AIAA 91-5059.
  • 4[4]Lindblad I A A,Crnland T A,Cambier J L.A study of hypersonic afterbody flowfields[R].AIAA 97-2289.
  • 5[5]Lam D W.Use of the PARC code to estimate the off-design transonic performance of an over/under turboramjet nozzle[R].NASA TM 106924,1995.
  • 6[6]Yee H C,Klopfer G H,Montagne J L. High resolution shock capturing schemes for inviscid and viscous hypersonic flows[R].NASA TM 100097,1988.
  • 7[7]Yoon S,Jameson A. An LU-SSOR scheme for the Euler and Navier-Stokes equations[R].NASA CR 179556,1986.
  • 8[8]Law C H.Two-dimensional compression corner and planar shock wave interactions with a supersonic,turbulent boundary layer[R].ARL TR 75-0157.
  • 9[9]Baldwin B S,Lomax H.Thin layer approximation and algebraic model for separated turbulent flows[R].AIAA 78-257.
  • 10Serre L, Falempin F. Promethee: The French military hypersonic propulsion program [ R ]. AIAA 2003-6950.

共引文献40

同被引文献57

引证文献9

二级引证文献27

相关作者

内容加载中请稍等...

相关机构

内容加载中请稍等...

相关主题

内容加载中请稍等...

浏览历史

内容加载中请稍等...
;
使用帮助 返回顶部