期刊文献+

基于流记录偏好度的多分类器融合流量识别模型 被引量:4

Traffic classification model based on fusion of multiple classifiers with flow preference
下载PDF
导出
摘要 通过将证据理论引入到流量分类的决策模块中,提出了偏好度和时效度权值,并通过实测数据对多分类器识别模型进行验证,其结果表明该模型较好的克服了单分类器的片面性,通过对多个证据的融合来优化识别的结果。 The concept of multiclassifier fusion was introduced which can improve the classltcatlon accuracy ano over come the disadvantage of single classifier. DS theory was introduced into decision module of traffic classification and preference and timeliness was proposed. After analyzing multiclassifier model by simulation, the results show the new classifier model can overcome one sidedness of single classifier, depending on multiple evidences to optimize the traffic results.
作者 董仕 丁伟
出处 《通信学报》 EI CSCD 北大核心 2013年第10期143-152,共10页 Journal on Communications
基金 国家重点基础研究发展计划("973"计划)基金资助项目(2009CB320505) 国家科技支撑计划基金资助项目(2008BAH37B04)~~
关键词 多分类器融合 证据理论 偏好度 机器学习 multi-classifier DS theory preference machine learning
  • 相关文献

参考文献2

二级参考文献27

  • 1Madhukar A, Williamson C. A longitudinal study of P2P traffic classification [C]//Proc of the 14th IEEE Int Syrup on Modeling, Analysis, and Simulation. Washington, DC IEEE Computer Society, 2006:179-188
  • 2Moore A W, Papagiannaki K. Toward the accurate identification of network applications [G]//Dovrolis C. LNCS 3431: Proc of the PAM 2005. Heidelberg: Springer, 2005:41-54
  • 3Karagiannis T, Papagiannaki K, Faloutsos M. BLINC: Multilevel traffic classification in the dark [C]//Proc of ACM SIGCOMM. New York: ACM, 2005.. 229-240
  • 4Roughan M, Sen S, Spatscheck O, et al. Class of service mapping for QoS: A statistical signature-hased approach to IP traffic classification [C]//Proc of ACM SIGCOMM Internet Measurement Conf 2004. New York: ACM, 2004: 135-148
  • 5Zuev D. Moore A W. Traffic classification using a statistical approach [G]//Dovrolis C. LNCS 3431: Proc of the PAM. Heidelberg, Germany: Springer, 2005:321-324
  • 6Moore A W, Zuev D. Internet traffic classification using Bayesian analysis techniques [C] //Proc of the 2005 ACM SIGMETRICS Int Conf on Measurement and Modeling of Computer Systems. New York: ACM, 2005: 50-60
  • 7Tan P N, Steinbach M, Kumar V. Introduction to Data Mining [M]. Boston: Addison Wesley, 2006
  • 8Moore A W, Zuev D, Crogan M. Discriminators for use in flow-based classification, RR-05-13 [R]. London: Queen Mary University of London, 2005
  • 9Witten I H, Frank E. Data Mining: Practical Machine Learning Tools and Techniques [M]. 2nd ed. Amsterdam: Elsevier Inc. , 2005
  • 10Chang C C, Lin C J. LIBSVM: A library for support vector machines[EB/OL]. 2001 [2007-08-06]. http://www.csie. ntu. edu. tw/-ejlin/libsvm

共引文献63

同被引文献121

  • 1杜敏,陈兴蜀,谭骏.A Novel P2P Traffic Identification Algorithm Based on BPSO and Weighted KNN[J].China Communications,2011,8(2):52-58. 被引量:6
  • 2孟姣,王丽宏,熊刚,姚垚.基于机器学习的SSH应用分类研究[J].计算机研究与发展,2012,49(S2):153-159. 被引量:2
  • 3马丁.调查显示HTTP网络流量过去四年首超P2P[EB/OL].(2007-6-19)[2012-12-12].http://tech.sina.com.cn/i/2007-06-19/21001571600.shtml.
  • 4蔡强.专家称P2P流量占国内总带宽过半宽带资源[EB/OL].(2007-6-6)[2012-12-12].http://it.sohu.com/20070606/n250414169.shtml.
  • 5IPOQUE.Ipoque Internet study 2007:P2P file sharing still dominates world wide internet[EB/OL].(2007-11-28)[2012-12-12].http://www.ipoque.com/news&events/news/ipoque internet study 2007 p2p file sharing still dominates the worldwide internet.html.
  • 6驱动之家.2008最新P2P流量监控与管理解决方案[EB/OL].(2008-2-27)[2012-12-12].http://tech.sina.com.cn/h/2008-02-27/1843588168.shtml.
  • 7苗欣.移动互联网流量已逼近固定互联网[EB/OL].(2010-3-27)[2012-12-12].http://www.caopeng.net/2010/03/mobile-internet-traffic-has-been-close-to-the-?xedinternet/.
  • 8中国市场调查网.全球移动互联网流量发展走势[EB/OL].(2011-11-27)[2012-12-12].http://www.cnscdc.com/touziredian/101841.html.
  • 9小贝.视频内容已占移动互联网流量半壁江山[EB/OL].(2012-2-27)[2012-12-12].http://www.meihua.info/today/post/post 4eecf664-0180-4efa-a160-e7121da031f3.aspx.
  • 10INCAPSULA.调查显示51%互联网流量来自“非人类”用户[EB/OL].(2012-3-16)[2012-12-12].http://games.cntv.cn/2012/news 01 0316/83922.shtml.

引证文献4

二级引证文献28

相关作者

内容加载中请稍等...

相关机构

内容加载中请稍等...

相关主题

内容加载中请稍等...

浏览历史

内容加载中请稍等...
;
使用帮助 返回顶部